BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 35577856)

  • 21. miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer.
    Josson S; Gururajan M; Hu P; Shao C; Chu GY; Zhau HE; Liu C; Lao K; Lu CL; Lu YT; Lichterman J; Nandana S; Li Q; Rogatko A; Berel D; Posadas EM; Fazli L; Sareen D; Chung LW
    Clin Cancer Res; 2014 Sep; 20(17):4636-46. PubMed ID: 24963047
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer.
    Huang S; Wa Q; Pan J; Peng X; Ren D; Huang Y; Chen X; Tang Y
    J Exp Clin Cancer Res; 2017 Dec; 36(1):173. PubMed ID: 29202848
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mineralized human primary osteoblast matrices as a model system to analyse interactions of prostate cancer cells with the bone microenvironment.
    Reichert JC; Quent VM; Burke LJ; Stansfield SH; Clements JA; Hutmacher DW
    Biomaterials; 2010 Nov; 31(31):7928-36. PubMed ID: 20688384
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer.
    Zhang X
    Cancer Commun (Lond); 2019 Nov; 39(1):76. PubMed ID: 31753020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment.
    Koeneman KS; Yeung F; Chung LW
    Prostate; 1999 Jun; 39(4):246-61. PubMed ID: 10344214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tenascin-C and Integrin α9 Mediate Interactions of Prostate Cancer with the Bone Microenvironment.
    San Martin R; Pathak R; Jain A; Jung SY; Hilsenbeck SG; Piña-Barba MC; Sikora AG; Pienta KJ; Rowley DR
    Cancer Res; 2017 Nov; 77(21):5977-5988. PubMed ID: 28916657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MTA1 drives malignant progression and bone metastasis in prostate cancer.
    Kumar A; Dhar S; Campanelli G; Butt NA; Schallheim JM; Gomez CR; Levenson AS
    Mol Oncol; 2018 Sep; 12(9):1596-1607. PubMed ID: 30027683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease.
    Pasoglou V; Michoux N; Peeters F; Larbi A; Tombal B; Selleslagh T; Omoumi P; Vande Berg BC; Lecouvet FE
    Radiology; 2015 Apr; 275(1):155-66. PubMed ID: 25513855
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osteoblast-Secreted Factors Mediate Dormancy of Metastatic Prostate Cancer in the Bone via Activation of the TGFβRIII-p38MAPK-pS249/T252RB Pathway.
    Yu-Lee LY; Yu G; Lee YC; Lin SC; Pan J; Pan T; Yu KJ; Liu B; Creighton CJ; Rodriguez-Canales J; Villalobos PA; Wistuba II; de Nadal E; Posas F; Gallick GE; Lin SH
    Cancer Res; 2018 Jun; 78(11):2911-2924. PubMed ID: 29514796
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Response in bone turnover markers during therapy predicts overall survival in patients with metastatic prostate cancer: analysis of three clinical trials.
    Som A; Tu SM; Liu J; Wang X; Qiao W; Logothetis C; Corn PG
    Br J Cancer; 2012 Oct; 107(9):1547-53. PubMed ID: 23033003
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A humanized orthotopic tumor microenvironment alters the bone metastatic tropism of prostate cancer cells.
    McGovern JA; Bock N; Shafiee A; Martine LC; Wagner F; Baldwin JG; Landgraf M; Lahr CA; Meinert C; Williams ED; Pollock PM; Denham J; Russell PJ; Risbridger GP; Clements JA; Loessner D; Holzapfel BM; Hutmacher DW
    Commun Biol; 2021 Aug; 4(1):1014. PubMed ID: 34462519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer.
    Gururajan M; Josson S; Chu GC; Lu CL; Lu YT; Haga CL; Zhau HE; Liu C; Lichterman J; Duan P; Posadas EM; Chung LW
    Clin Cancer Res; 2014 Dec; 20(24):6559-69. PubMed ID: 25324143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The alpha-receptor for platelet-derived growth factor as a target for antibody-mediated inhibition of skeletal metastases from prostate cancer cells.
    Russell MR; Jamieson WL; Dolloff NG; Fatatis A
    Oncogene; 2009 Jan; 28(3):412-21. PubMed ID: 18850002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The secreted matrix protein mindin increases prostate tumor progression and tumor-bone crosstalk via ERK 1/2 regulation.
    Ardura JA; Gutiérrez-Rojas I; Álvarez-Carrión L; Rodríguez-Ramos MR; Pozuelo JM; Alonso V
    Carcinogenesis; 2019 Jul; 40(7):828-839. PubMed ID: 31168562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment in radium-223 treated patients.
    Umeda T; Koizumi M; Fukai S; Miyaji N; Motegi K; Nakazawa S; Takiguchi T
    Ann Nucl Med; 2018 Feb; 32(2):105-113. PubMed ID: 29243019
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myeloid-like tumor hybrid cells in bone marrow promote progression of prostate cancer bone metastasis.
    Ye X; Huang X; Fu X; Zhang X; Lin R; Zhang W; Zhang J; Lu Y
    J Hematol Oncol; 2023 May; 16(1):46. PubMed ID: 37138326
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D porous chitosan-alginate scaffold stiffness promotes differential responses in prostate cancer cell lines.
    Xu K; Ganapathy K; Andl T; Wang Z; Copland JA; Chakrabarti R; Florczyk SJ
    Biomaterials; 2019 Oct; 217():119311. PubMed ID: 31279100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Construction and improvement of animal models with different positional osseous metastasis of prostate cancer in vivo].
    Bi YX; Xiao MH; Zhang NN; Li XY; Mao XP; Zhang K; Zhang ZR; Zhao LY
    Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Aug; 49(4):590-596. PubMed ID: 28816271
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of TGF-β responsiveness in prostate stromal cells alters chemokine levels and facilitates the development of mixed osteoblastic/osteolytic bone lesions.
    Li X; Sterling JA; Fan KH; Vessella RL; Shyr Y; Hayward SW; Matrisian LM; Bhowmick NA
    Mol Cancer Res; 2012 Apr; 10(4):494-503. PubMed ID: 22290877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion.
    Wang W; Yang X; Dai J; Lu Y; Zhang J; Keller ET
    Oncogene; 2019 Jun; 38(23):4540-4559. PubMed ID: 30755731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.