These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 35578371)
1. Using machine learning to improve the accuracy of genomic prediction of reproduction traits in pigs. Wang X; Shi S; Wang G; Luo W; Wei X; Qiu A; Luo F; Ding X J Anim Sci Biotechnol; 2022 May; 13(1):60. PubMed ID: 35578371 [TBL] [Abstract][Full Text] [Related]
2. Predictive ability of multi-population genomic prediction methods of phenotypes for reproduction traits in Chinese and Austrian pigs. Wang X; Zhang Z; Du H; Pfeiffer C; Mészáros G; Ding X Genet Sel Evol; 2024 Jun; 56(1):49. PubMed ID: 38926647 [TBL] [Abstract][Full Text] [Related]
3. Using Different Single-Step Strategies to Improve the Efficiency of Genomic Prediction on Body Measurement Traits in Pig. Song H; Zhang J; Zhang Q; Ding X Front Genet; 2018; 9():730. PubMed ID: 30693018 [TBL] [Abstract][Full Text] [Related]
4. Improving Genomic Prediction with Machine Learning Incorporating TPE for Hyperparameters Optimization. Liang M; An B; Li K; Du L; Deng T; Cao S; Du Y; Xu L; Gao X; Zhang L; Li J; Gao H Biology (Basel); 2022 Nov; 11(11):. PubMed ID: 36421361 [TBL] [Abstract][Full Text] [Related]
5. Application of ensemble learning to genomic selection in chinese simmental beef cattle. Liang M; Miao J; Wang X; Chang T; An B; Duan X; Xu L; Gao X; Zhang L; Li J; Gao H J Anim Breed Genet; 2021 May; 138(3):291-299. PubMed ID: 33089920 [TBL] [Abstract][Full Text] [Related]
6. Empirical comparison between different methods for genomic prediction of number of piglets born alive in moderate sized breeding populations. Fangmann A; Sharifi RA; Heinkel J; Danowski K; Schrade H; Erbe M; Simianer H J Anim Sci; 2017 Apr; 95(4):1434-1443. PubMed ID: 28464085 [TBL] [Abstract][Full Text] [Related]
7. Genomic prediction for growth and reproduction traits in pig using an admixed reference population. Song H; Zhang J; Jiang Y; Gao H; Tang S; Mi S; Yu F; Meng Q; Xiao W; Zhang Q; Ding X J Anim Sci; 2017 Aug; 95(8):3415-3424. PubMed ID: 28805914 [TBL] [Abstract][Full Text] [Related]
8. Single-Step Genomic Evaluation for Meat Quality Traits, Sensory Characteristics, and Fatty-Acid Composition in Duroc Pigs. Lopez BI; Santiago KG; Lee D; Cho Y; Lim D; Seo K Genes (Basel); 2020 Sep; 11(9):. PubMed ID: 32916909 [TBL] [Abstract][Full Text] [Related]
9. Short communication: Single-step genomic evaluation of milk production traits using multiple-trait random regression model in Chinese Holsteins. Kang H; Ning C; Zhou L; Zhang S; Yan Q; Liu JF J Dairy Sci; 2018 Dec; 101(12):11143-11149. PubMed ID: 30268613 [TBL] [Abstract][Full Text] [Related]
10. Single-step genomic evaluation for growth traits in a Mexican Braunvieh cattle population. Valerio-Hernández JE; Ruíz-Flores A; Nilforooshan MA; Pérez-Rodríguez P Anim Biosci; 2023 Jul; 36(7):1003-1009. PubMed ID: 36915917 [TBL] [Abstract][Full Text] [Related]
11. Genome-enabled prediction of reproductive traits in Nellore cattle using parametric models and machine learning methods. Alves AAC; Espigolan R; Bresolin T; Costa RM; Fernandes Júnior GA; Ventura RV; Carvalheiro R; Albuquerque LG Anim Genet; 2021 Feb; 52(1):32-46. PubMed ID: 33191532 [TBL] [Abstract][Full Text] [Related]
12. Comparison of different response variables in genomic prediction using GBLUP and ssGBLUP methods in Iranian Holstein cattle. Afrazandeh M; Abdolahi-Arpanahi R; Abbasi MA; Kashan NEJ; Torshizi RV J Dairy Res; 2022 May; ():1-7. PubMed ID: 35604025 [TBL] [Abstract][Full Text] [Related]
13. Improving the accuracy of genomic prediction in dairy cattle using the biologically annotated neural networks framework. Wang X; Shi S; Ali Khan MY; Zhang Z; Zhang Y J Anim Sci Biotechnol; 2024 Jul; 15(1):87. PubMed ID: 38945998 [TBL] [Abstract][Full Text] [Related]
14. Accuracy of Genomic Prediction for Milk Production Traits in Philippine Dairy Buffaloes. Herrera JRV; Flores EB; Duijvesteijn N; Moghaddar N; van der Werf JH Front Genet; 2021; 12():682576. PubMed ID: 34777455 [TBL] [Abstract][Full Text] [Related]
15. A Stacking Ensemble Learning Framework for Genomic Prediction. Liang M; Chang T; An B; Duan X; Du L; Wang X; Miao J; Xu L; Gao X; Zhang L; Li J; Gao H Front Genet; 2021; 12():600040. PubMed ID: 33747037 [TBL] [Abstract][Full Text] [Related]
16. Multi-Trait Single-Step GBLUP Improves Accuracy of Genomic Prediction for Carcass Traits Using Yearling Weight and Ultrasound Traits in Hanwoo. Mehrban H; Naserkheil M; Lee D; Ibáñez-Escriche N Front Genet; 2021; 12():692356. PubMed ID: 34394186 [TBL] [Abstract][Full Text] [Related]
17. Weighted Single-Step Genomic Best Linear Unbiased Prediction Method Application for Assessing Pigs on Meat Productivity and Reproduction Traits. Kabanov A; Melnikova E; Nikitin S; Somova M; Fomenko O; Volkova V; Kostyunina O; Karpushkina T; Martynova E; Trebunskikh E Animals (Basel); 2022 Jun; 12(13):. PubMed ID: 35804591 [TBL] [Abstract][Full Text] [Related]
18. Genomic Prediction of Average Daily Gain, Back-Fat Thickness, and Loin Muscle Depth Using Different Genomic Tools in Canadian Swine Populations. Salek Ardestani S; Jafarikia M; Sargolzaei M; Sullivan B; Miar Y Front Genet; 2021; 12():665344. PubMed ID: 34149806 [TBL] [Abstract][Full Text] [Related]
19. Comparison of conventional BLUP and single-step genomic BLUP evaluations for yearling weight and carcass traits in Hanwoo beef cattle using single trait and multi-trait models. Mehrban H; Lee DH; Naserkheil M; Moradi MH; Ibáñez-Escriche N PLoS One; 2019; 14(10):e0223352. PubMed ID: 31609979 [TBL] [Abstract][Full Text] [Related]
20. Effect of selection and selective genotyping for creation of reference on bias and accuracy of genomic prediction. Gowane GR; Lee SH; Clark S; Moghaddar N; Al-Mamun HA; van der Werf JHJ J Anim Breed Genet; 2019 Sep; 136(5):390-407. PubMed ID: 31215699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]