These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 35578372)

  • 1. Machine learned daily life history classification using low frequency tracking data and automated modelling pipelines: application to North American waterfowl.
    Overton C; Casazza M; Bretz J; McDuie F; Matchett E; Mackell D; Lorenz A; Mott A; Herzog M; Ackerman J
    Mov Ecol; 2022 May; 10(1):23. PubMed ID: 35578372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AIMS for wildlife: Developing an automated interactive monitoring system to integrate real-time movement and environmental data for true adaptive management.
    Casazza ML; Lorenz AA; Overton CT; Matchett EL; Mott AL; Mackell DA; McDuie F
    J Environ Manage; 2023 Nov; 345():118636. PubMed ID: 37574637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automating sedation state assessments using natural language processing.
    Conway A; Li J; Rad MG; Mafeld S; Taati B
    J Nurs Scholarsh; 2024 Mar; ():. PubMed ID: 38532639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using dynamic Brownian bridge movement modelling to measure temporal patterns of habitat selection.
    Byrne ME; Clint McCoy J; Hinton JW; Chamberlain MJ; Collier BA
    J Anim Ecol; 2014 Sep; 83(5):1234-43. PubMed ID: 24460723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Social Reminiscence in Older Adults' Everyday Conversations: Automated Detection Using Natural Language Processing and Machine Learning.
    Ferrario A; Demiray B; Yordanova K; Luo M; Martin M
    J Med Internet Res; 2020 Sep; 22(9):e19133. PubMed ID: 32866108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Using Global Positioning Systems (GPS) and temperature data to generate time-activity classifications for estimating personal exposure in air monitoring studies: an automated method.
    Nethery E; Mallach G; Rainham D; Goldberg MS; Wheeler AJ
    Environ Health; 2014 May; 13(1):33. PubMed ID: 24885722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GPS tracking data reveals daily spatio-temporal movement patterns of waterfowl.
    McDuie F; Casazza ML; Overton CT; Herzog MP; Hartman CA; Peterson SH; Feldheim CL; Ackerman JT
    Mov Ecol; 2019; 7():6. PubMed ID: 30834128
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated time activity classification based on global positioning system (GPS) tracking data.
    Wu J; Jiang C; Houston D; Baker D; Delfino R
    Environ Health; 2011 Nov; 10():101. PubMed ID: 22082316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
    Li F; Zhao C; Xia Z; Wang Y; Zhou X; Li GZ
    BMC Complement Altern Med; 2012 Aug; 12():127. PubMed ID: 22898352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refining Time-Activity Classification of Human Subjects Using the Global Positioning System.
    Hu M; Li W; Li L; Houston D; Wu J
    PLoS One; 2016; 11(2):e0148875. PubMed ID: 26919723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classifying behavior from short-interval biologging data: An example with GPS tracking of birds.
    Bergen S; Huso MM; Duerr AE; Braham MA; Katzner TE; Schmuecker S; Miller TA
    Ecol Evol; 2022 Feb; 12(2):e08395. PubMed ID: 35154643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automated classification of time-activity-location patterns for improved estimation of personal exposure to air pollution.
    Chatzidiakou L; Krause A; Kellaway M; Han Y; Li Y; Martin E; Kelly FJ; Zhu T; Barratt B; Jones RL
    Environ Health; 2022 Dec; 21(1):125. PubMed ID: 36482402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature engineering and machine learning for causality assessment in pharmacovigilance: Lessons learned from application to the FDA Adverse Event Reporting System.
    Kreimeyer K; Dang O; Spiker J; Muñoz MA; Rosner G; Ball R; Botsis T
    Comput Biol Med; 2021 Aug; 135():104517. PubMed ID: 34130003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Machine Learning Electronic Health Record Identification of Patients with Rheumatoid Arthritis: Algorithm Pipeline Development and Validation Study.
    Maarseveen TD; Meinderink T; Reinders MJT; Knitza J; Huizinga TWJ; Kleyer A; Simon D; van den Akker EB; Knevel R
    JMIR Med Inform; 2020 Nov; 8(11):e23930. PubMed ID: 33252349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian Bridge Movement Models.
    Silva I; Crane M; Marshall BM; Strine CT
    Mov Ecol; 2020; 8():43. PubMed ID: 33133609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-class boosting for the analysis of multiple incomplete views on microbiome data.
    Simeon A; Radovanović M; Lončar-Turukalo T; Ceci M; Brdar S; Pio G
    BMC Bioinformatics; 2024 May; 25(1):188. PubMed ID: 38745112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Informing wetland management with waterfowl movement and sanctuary use responses to human-induced disturbance.
    McDuie F; Lorenz AA; Klinger RC; Overton CT; Feldheim CL; Ackerman JT; Casazza ML
    J Environ Manage; 2021 Nov; 297():113170. PubMed ID: 34280859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reproducible evaluation of classification methods in Alzheimer's disease: Framework and application to MRI and PET data.
    Samper-González J; Burgos N; Bottani S; Fontanella S; Lu P; Marcoux A; Routier A; Guillon J; Bacci M; Wen J; Bertrand A; Bertin H; Habert MO; Durrleman S; Evgeniou T; Colliot O; ;
    Neuroimage; 2018 Dec; 183():504-521. PubMed ID: 30130647
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.