These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 35578520)

  • 1. Synthetic Assembly of Bifluorescence-Labeled Glycopolymers as Substrates for Assaying α-Amylase by Resonance Energy Transfer.
    Matsuoka K; Arai H; Oka H; Koyama T; Hatano K
    ACS Macro Lett; 2012 Feb; 1(2):266-269. PubMed ID: 35578520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorogenic glycopolymers available for determining the affinity of lectins by intermolecular FRET.
    Matsuoka K; Suzuki Y; Koyama T; Matsushita T; Hatano K
    Bioorg Med Chem Lett; 2020 Apr; 30(8):127024. PubMed ID: 32098722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer in polydiacetylene liposomes.
    Li X; Matthews S; Kohli P
    J Phys Chem B; 2008 Oct; 112(42):13263-72. PubMed ID: 18816092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthetic studies of bi-fluorescence-labeled maltooligosaccharides as substrates for α-amylase on the basis of fluorescence resonance energy transfer (FRET).
    Oka H; Koyama T; Hatano K; Matsuoka K
    Bioorg Med Chem; 2012 Jan; 20(1):435-45. PubMed ID: 22100259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRET-based direct and continuous monitoring of human fucosyltransferases activity: an efficient synthesis of versatile GDP-L-fucose derivatives from abundant D-galactose.
    Maeda T; Nishimura S
    Chemistry; 2008; 14(2):478-87. PubMed ID: 17929334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bi-fluorescence-labeled maltoheptaoside: convenient substrate for continual assay of alpha-amylase.
    Nishimura SI; Kimura N; Matsuoka K; Lee YC
    Carbohydr Lett; 2001; 4(2):77-84. PubMed ID: 11506161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple and conveniently accessible bi-fluorescence-labeled substrates for amylases.
    Oka H; Koyama T; Hatano K; Terunuma D; Matsuoka K
    Bioorg Med Chem Lett; 2010 Mar; 20(6):1969-71. PubMed ID: 20171095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative FRET (Förster Resonance Energy Transfer) analysis for SENP1 protease kinetics determination.
    Liu Y; Liao J
    J Vis Exp; 2013 Feb; (72):e4430. PubMed ID: 23463095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aqueous One-pot Synthesis of Glycopolymers by Glycosidase-catalyzed Glycomonomer Synthesis Using 4,6-Dimetoxy Triazinyl Glycoside Followed by Radical Polymerization.
    Tanaka T; Matsuura A; Aso Y; Ohara H
    J Appl Glycosci (1999); 2020; 67(4):119-127. PubMed ID: 34354538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of human pancreatic and salivary alpha-amylases on maltooligosaccharides: evaluation of kinetic parameters.
    Saito N; Horiuchi T; Yoshida M; Imai T
    Clin Chim Acta; 1979 Oct; 97(2-3):253-60. PubMed ID: 385176
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence resonance energy transfer (FRET) and competing processes in donor-acceptor substituted DNA strands: a comparative study of ensemble and single-molecule data.
    Dietrich A; Buschmann V; Müller C; Sauer M
    J Biotechnol; 2002 Jan; 82(3):211-31. PubMed ID: 11999691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer.
    Chen Y; Erickson HP
    J Biol Chem; 2005 Jun; 280(23):22549-54. PubMed ID: 15826938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer-based stoichiometry in living cells.
    Hoppe A; Christensen K; Swanson JA
    Biophys J; 2002 Dec; 83(6):3652-64. PubMed ID: 12496132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compared reactivity of allyl ribosides in UV-initiated free radical copolymerization with acceptor monomers.
    Pichavant L; Guillermain C; Duchiron S; Coqueret X
    Biomacromolecules; 2009 Feb; 10(2):400-7. PubMed ID: 19128058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile and Efficient Preparation of Tri-component Fluorescent Glycopolymers via RAFT-controlled Polymerization.
    Wang W; Lester JM; Amorosa AE; Chance DL; Mossine VV; Mawhinney TP
    J Vis Exp; 2015 Jun; (100):e52922. PubMed ID: 26132587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polymerization Reactions and Modifications of Polymers by Ionizing Radiation.
    Ashfaq A; Clochard MC; Coqueret X; Dispenza C; Driscoll MS; Ulański P; Al-Sheikhly M
    Polymers (Basel); 2020 Nov; 12(12):. PubMed ID: 33266261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous assay of protein tyrosine phosphatases based on fluorescence resonance energy transfer.
    Nishikata M; Yoshimura Y; Deyama Y; Suzuki K
    Biochimie; 2006 Jul; 88(7):879-86. PubMed ID: 16540231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Uptake of a Fructose Glycopolymer Prepared by RAFT Polymerization into Human Breast Cancer Cells.
    von der Ehe C; Rinkenauer A; Weber C; Szamosvari D; Gottschaldt M; Schubert US
    Macromol Biosci; 2016 Apr; 16(4):508-21. PubMed ID: 26688011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-Mediated Fluorescence Resonance Energy Transfer (P-FRET) Probe: Fabrication and Hydroxyl Radical Detection.
    Yu X; Zhu W; Ouyang W; Zhang X; Qiu H; Zhang Z; Xing B
    Photochem Photobiol; 2022 Mar; 98(2):371-377. PubMed ID: 35064566
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.