These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35578731)

  • 1. Hydrogen Recovery from Coke Oven Gas. Comparative Analysis of Technical Alternatives.
    Moral G; Ortiz-Imedio R; Ortiz A; Gorri D; Ortiz I
    Ind Eng Chem Res; 2022 May; 61(18):6106-6124. PubMed ID: 35578731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical alternatives for coke oven gas utilization in China: A comparative analysis of environment-economic-strategic perspectives.
    Di Z; Lei F; Jing J; Peng H; Lu X; Cheng F
    Environ Sci Ecotechnol; 2024 Sep; 21():100395. PubMed ID: 38357481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of CO
    Angeli SD; Gossler S; Lichtenberg S; Kass G; Agrawal AK; Valerius M; Kinzel KP; Deutschmann O
    Angew Chem Int Ed Engl; 2021 May; 60(21):11852-11857. PubMed ID: 33661578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative life cycle assessment of ammonia production by coke oven gas via single and coproduction processes.
    Li J; Ma L; Qu P; Tian B; Nie Y; Liu L; Xu L; Ma X
    Sci Total Environ; 2023 Jul; 882():163638. PubMed ID: 37087007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Concept design, technical performance, and GHG emissions analysis of petroleum coke direct chemical looping hydrogen highly integrated with gasification for methanol production process.
    Xiang D; Li P; Liu L
    Sci Total Environ; 2022 Sep; 838(Pt 4):156652. PubMed ID: 35697223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Well-to-Wheels Fossil Energy Consumption and CO
    Lin T; Wu Y; He XY; Zhang SJ; Hao JM
    Huan Jing Ke Xue; 2018 Aug; 39(8):3946-3953. PubMed ID: 29998705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Dispersed FeAg-MCM41 Catalyst for Medium-Temperature Hydrogen Sulfide Oxidation in Coke Oven Gas.
    Gu JN; Liang J; Xue Y; Yu C; Li X; Li K; Guo M; Jia J; Sun T
    Environ Sci Technol; 2023 Sep; 57(36):13579-13587. PubMed ID: 37653710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustainability analysis of the use of natural gas in the iron and steel industry.
    Ballı MF; Sel Ç
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4531-4554. PubMed ID: 35974274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high efficient absorbent for the separation of H
    Tian X; Wang L; Zhang P; Fu D; Wang Z
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5822-5832. PubMed ID: 32975752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fugitive coke oven gas emission profile by continuous line averaged open-path Fourier transform infrared monitoring.
    Lin C; Liou N; Chang PE; Yang JC; Sun E
    J Air Waste Manag Assoc; 2007 Apr; 57(4):472-9. PubMed ID: 17458466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen: Its Future Role in the Nation's Energy Economy.
    Winsche WE; Hoffman KC; Salzano FJ
    Science; 1973 Jun; 180(4093):1325-32. PubMed ID: 17831094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance and microbial community analysis of the anaerobic reactor with coke oven gas biomethanation and in situ biogas upgrading.
    Wang W; Xie L; Luo G; Zhou Q; Angelidaki I
    Bioresour Technol; 2013 Oct; 146():234-239. PubMed ID: 23941705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Method development and validation for total mercury determination in coke oven gas combining a trap sampling method with CVAAS detection.
    Górecki J; Burmistrz P; Trzaskowska M; Sołtys B; Gołaś J
    Talanta; 2018 Oct; 188():293-298. PubMed ID: 30029379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The opportunity of membrane technology for hydrogen purification in the power to hydrogen (P2H) roadmap: a review.
    Lu HT; Li W; Miandoab ES; Kanehashi S; Hu G
    Front Chem Sci Eng; 2021; 15(3):464-482. PubMed ID: 33391844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analyzing the methanation thermodynamic feasibility of steel plant byproduct gases.
    Ling Q; Li X; Pei Q; Lei Z; Cui P; Xie RL
    Sci Rep; 2024 May; 14(1):12282. PubMed ID: 38811763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reducing CO2 emissions and energy consumption of heat-integrated distillation systems.
    Gadalla MA; Olujic Z; Jansens PJ; Jobson M; Smith R
    Environ Sci Technol; 2005 Sep; 39(17):6860-70. PubMed ID: 16190250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative water footprint assessment of fuel cell electric vehicles and compressed natural gas vehicles.
    Yao D; Liu Y; Xu Z; Zhu Z; Qi J; Wang Y; Cui P
    Sci Total Environ; 2022 Jul; 830():154820. PubMed ID: 35341846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China.
    Shi J; Deng H; Bai Z; Kong S; Wang X; Hao J; Han X; Ning P
    Sci Total Environ; 2015 May; 515-516():101-8. PubMed ID: 25704266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury mass flow in iron and steel production process and its implications for mercury emission control.
    Wang F; Wang S; Zhang L; Yang H; Gao W; Wu Q; Hao J
    J Environ Sci (China); 2016 May; 43():293-301. PubMed ID: 27155436
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.