BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 35578969)

  • 1. Oxidative Stress and Redox Signaling in the Pathophysiology of Liver Diseases.
    Mooli RGR; Mukhi D; Ramakrishnan SK
    Compr Physiol; 2022 Mar; 12(2):3167-3192. PubMed ID: 35578969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative Stress as a Critical Factor in Nonalcoholic Fatty Liver Disease Pathogenesis.
    Spahis S; Delvin E; Borys JM; Levy E
    Antioxid Redox Signal; 2017 Apr; 26(10):519-541. PubMed ID: 27452109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion Channels and Oxidative Stress as a Potential Link for the Diagnosis or Treatment of Liver Diseases.
    Ramírez A; Vázquez-Sánchez AY; Carrión-Robalino N; Camacho J
    Oxid Med Cell Longev; 2016; 2016():3928714. PubMed ID: 26881024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease.
    Chen Z; Tian R; She Z; Cai J; Li H
    Free Radic Biol Med; 2020 May; 152():116-141. PubMed ID: 32156524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative Stress and Antioxidant Biomarkers in Clinical and Experimental Models of Non-Alcoholic Fatty Liver Disease.
    Ore A; Akinloye OA
    Medicina (Kaunas); 2019 Jan; 55(2):. PubMed ID: 30682878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic AMPK signaling dynamic activation in response to REDOX balance are sentinel biomarkers of exercise and antioxidant intervention to improve blood glucose control.
    Wu M; Zhao A; Yan X; Gao H; Zhang C; Liu X; Luo Q; Xie F; Liu S; Shi D
    Elife; 2022 Sep; 11():. PubMed ID: 36155132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perspectives in liver redox imbalance: Toxicological and pharmacological aspects underlying iron overloading, nonalcoholic fatty liver disease, and thyroid hormone action.
    Videla LA; Valenzuela R
    Biofactors; 2022 Mar; 48(2):400-415. PubMed ID: 34687092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Free radicals and antioxidants in normal physiological functions and human disease.
    Valko M; Leibfritz D; Moncol J; Cronin MT; Mazur M; Telser J
    Int J Biochem Cell Biol; 2007; 39(1):44-84. PubMed ID: 16978905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease.
    Paradies G; Paradies V; Ruggiero FM; Petrosillo G
    World J Gastroenterol; 2014 Oct; 20(39):14205-18. PubMed ID: 25339807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role and Mechanism of Oxidative Stress and Nuclear Receptors in the Development of NAFLD.
    Hong T; Chen Y; Li X; Lu Y
    Oxid Med Cell Longev; 2021; 2021():6889533. PubMed ID: 34745420
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of peroxisomes in ROS/RNS-metabolism: implications for human disease.
    Fransen M; Nordgren M; Wang B; Apanasets O
    Biochim Biophys Acta; 2012 Sep; 1822(9):1363-73. PubMed ID: 22178243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Alterations of Mitochondrial Function during NAFLD Progression-An Independent Effect of Mitochondrial ROS Production.
    Simões ICM; Amorim R; Teixeira J; Karkucinska-Wieckowska A; Carvalho A; Pereira SP; Simões RF; Szymanska S; Dąbrowski M; Janikiewicz J; Dobrzyń A; Oliveira PJ; Potes Y; Wieckowski MR
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34202179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidative stress and redox signaling mechanisms of alcoholic liver disease: updated experimental and clinical evidence.
    Zhu H; Jia Z; Misra H; Li YR
    J Dig Dis; 2012 Mar; 13(3):133-142. PubMed ID: 22356308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New Insights into the Pathogenesis of Non-Alcoholic Fatty Liver Disease: Gut-Derived Lipopolysaccharides and Oxidative Stress.
    Ferro D; Baratta F; Pastori D; Cocomello N; Colantoni A; Angelico F; Del Ben M
    Nutrients; 2020 Sep; 12(9):. PubMed ID: 32927776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship.
    Karkucinska-Wieckowska A; Simoes ICM; Kalinowski P; Lebiedzinska-Arciszewska M; Zieniewicz K; Milkiewicz P; Górska-Ponikowska M; Pinton P; Malik AN; Krawczyk M; Oliveira PJ; Wieckowski MR
    Eur J Clin Invest; 2022 Mar; 52(3):e13622. PubMed ID: 34050922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endogenous Liver Protections Against Lipotoxicity and Oxidative Stress to Avoid the Progression of Non-alcoholic Fatty Liver to more Serious Disease.
    Barrios-Maya MA; Ruiz-Ramírez A; El-Hafidi M
    Curr Mol Med; 2022; 22(5):401-420. PubMed ID: 34931979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations.
    Brennan LA; Kantorow M
    Exp Eye Res; 2009 Feb; 88(2):195-203. PubMed ID: 18588875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis.
    Diesen DL; Kuo PC
    J Surg Res; 2010 Jul; 162(1):95-109. PubMed ID: 20444470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxidant Mechanisms in Renal Injury and Disease.
    Ratliff BB; Abdulmahdi W; Pawar R; Wolin MS
    Antioxid Redox Signal; 2016 Jul; 25(3):119-46. PubMed ID: 26906267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.