These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 35579100)

  • 1. Proarrhythmic risk assessment of drugs by dV
    Jeong DU; Yoo Y; Marcellinus A; Kim KS; Lim KM
    CPT Pharmacometrics Syst Pharmacol; 2022 May; 11(5):653-664. PubMed ID: 35579100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. qInward variability-based
    Jeong DU; Qashri Mahardika T N; Marcellinus A; Lim KM
    Front Physiol; 2022; 13():1080190. PubMed ID: 36589462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Convolutional Neural Networks Using Action Potential Shape for In-Silico Proarrhythmic Risk Assessment.
    Jeong DU; Yoo Y; Marcellinus A; Lim KM
    Biomedicines; 2023 Jan; 11(2):. PubMed ID: 36830942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of
    Jeong DU; Danadibrata RZ; Marcellinus A; Lim KM
    Front Physiol; 2022; 13():1009647. PubMed ID: 36277213
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncertainty Quantification Reveals the Importance of Data Variability and Experimental Design Considerations for
    Chang KC; Dutta S; Mirams GR; Beattie KA; Sheng J; Tran PN; Wu M; Wu WW; Colatsky T; Strauss DG; Li Z
    Front Physiol; 2017; 8():917. PubMed ID: 29209226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico assessment on TdP risks of drug combinations under CiPA paradigm.
    Qauli AI; Marcellinus A; Setiawan MA; Zain AFN; Pinandito AM; Lim KM
    Sci Rep; 2023 Feb; 13(1):2924. PubMed ID: 36807374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving prediction of torsadogenic risk in the CiPA in silico model by appropriately accounting for clinical exposure.
    Leishman DJ
    J Pharmacol Toxicol Methods; 2020; 101():106654. PubMed ID: 31730936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action Potential Morphology Accurately Predicts Proarrhythmic Risk for Drugs With Potential to Prolong Cardiac Repolarization.
    Lee W; Ng B; Mangala MM; Perry MD; Subbiah RN; Vandenberg JI; Hill AP
    Circ Arrhythm Electrophysiol; 2023 Jul; 16(7):399-410. PubMed ID: 37334695
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of Drug Proarrhythmicity Using Artificial Neural Networks With
    Yoo Y; Marcellinus A; Jeong DU; Kim KS; Lim KM
    Front Physiol; 2021; 12():761691. PubMed ID: 34955882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utility of Normalized TdP Score System in Drug Proarrhythmic Potential Assessment: A Blinded in vitro Study of CiPA Drugs.
    Liu T; Liu J; Lu HR; Li H; Gallacher DJ; Chaudhary K; Wang Y; Yan GX
    Clin Pharmacol Ther; 2021 Jun; 109(6):1606-1617. PubMed ID: 33283267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of the proarrhythmic effects of repurposed antimalarials for COVID-19 treatment using a comprehensive
    Yoon SH; Lee HL; Jeong DU; Lim KM; Park SJ; Kim KS
    Front Pharmacol; 2023; 14():1220796. PubMed ID: 37649890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonclinical proarrhythmia models: predicting Torsades de Pointes.
    Lawrence CL; Pollard CE; Hammond TG; Valentin JP
    J Pharmacol Toxicol Methods; 2005; 52(1):46-59. PubMed ID: 15975832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimizing repolarization-related proarrhythmic risk in drug development and clinical practice.
    Farkas AS; Nattel S
    Drugs; 2010 Mar; 70(5):573-603. PubMed ID: 20329805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Considering population variability of electrophysiological models improves the in silico assessment of drug-induced torsadogenic risk.
    Llopis-Lorente J; Trenor B; Saiz J
    Comput Methods Programs Biomed; 2022 Jun; 221():106934. PubMed ID: 35687995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the relevance of CYP2J2 inhibition for drugs known to cause intermediate to high risk torsades de pointes.
    Leow JWH; Gu Y; Chan ECY
    Eur J Pharm Sci; 2023 Aug; 187():106475. PubMed ID: 37225005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the proarrhythmic potential of drugs: current status of models and surrogate parameters of torsades de pointes arrhythmias.
    Thomsen MB; Matz J; Volders PG; Vos MA
    Pharmacol Ther; 2006 Oct; 112(1):150-70. PubMed ID: 16714061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. International Multisite Study of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Drug Proarrhythmic Potential Assessment.
    Blinova K; Dang Q; Millard D; Smith G; Pierson J; Guo L; Brock M; Lu HR; Kraushaar U; Zeng H; Shi H; Zhang X; Sawada K; Osada T; Kanda Y; Sekino Y; Pang L; Feaster TK; Kettenhofen R; Stockbridge N; Strauss DG; Gintant G
    Cell Rep; 2018 Sep; 24(13):3582-3592. PubMed ID: 30257217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs.
    Vicente J; Stockbridge N; Strauss DG
    J Electrocardiol; 2016; 49(6):837-842. PubMed ID: 27524478
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Usefulness of Bnet, a Simple Linear Metric in Discerning Torsades De Pointes Risks in 28 CiPA Drugs.
    Han S; Han S; Kim KS; Lee HA; Yim DS
    Front Pharmacol; 2019; 10():1419. PubMed ID: 31849669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global Sensitivity Analysis of Ventricular Myocyte Model-Derived Metrics for Proarrhythmic Risk Assessment.
    Parikh J; Di Achille P; Kozloski J; Gurev V
    Front Pharmacol; 2019; 10():1054. PubMed ID: 31680938
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.