BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 35579118)

  • 1. Water-soluble and reusable Ru-NHC catalyst for aqueous-phase transfer hydrogenation of quinolines with formic acid.
    Maji B; Bhandari A; Sadhukhan R; Choudhury J
    Dalton Trans; 2022 May; 51(21):8258-8265. PubMed ID: 35579118
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple iridicycle catalyst for efficient transfer hydrogenation of N-heterocycles in water.
    Talwar D; Li HY; Durham E; Xiao J
    Chemistry; 2015 Mar; 21(14):5370-9. PubMed ID: 25728294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aqueous Biphasic Systems for the Synthesis of Formates by Catalytic CO
    Scott M; Blas Molinos B; Westhues C; Franciò G; Leitner W
    ChemSusChem; 2017 Mar; 10(6):1085-1093. PubMed ID: 28103428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic Effect in a Ruthenium Catalyst Designed in Nanoporous N-Functionalized Carbon for Efficient Hydrogenation of Heteroarenes.
    Chandra D; Saini S; Bhattacharya S; Bhaumik A; Kamata K; Hara M
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52668-52677. PubMed ID: 33185087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Density functional theory investigation of Ru(II) and Os(II) asymmetric transfer hydrogenation catalysts.
    Bolitho EM; Coverdale JPC; Wolny JA; Schünemann V; Sadler PJ
    Faraday Discuss; 2022 May; 234(0):264-283. PubMed ID: 35156974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-Heterocyclic Carbene (NHC)-Stabilized Ru
    Kathuria L; Din Reshi NU; Samuelson AG
    Chemistry; 2020 Jun; 26(34):7622-7630. PubMed ID: 32048353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage and delivery: the carbon dioxide - formic acid couple.
    Laurenczy G
    Chimia (Aarau); 2011; 65(9):663-6. PubMed ID: 22026175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Highly Efficient Heterogenized Iridium Complex for the Catalytic Hydrogenation of Carbon Dioxide to Formate.
    Park K; Gunasekar GH; Prakash N; Jung KD; Yoon S
    ChemSusChem; 2015 Oct; 8(20):3410-3. PubMed ID: 26493515
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer.
    Yang X
    Dalton Trans; 2013 Sep; 42(33):11987-91. PubMed ID: 23846167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multilateral mechanistic study into asymmetric transfer hydrogenation in water.
    Wu X; Liu J; Di Tommaso D; Iggo JA; Catlow CR; Bacsa J; Xiao J
    Chemistry; 2008; 14(25):7699-715. PubMed ID: 18604853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biogenic Synthesis of Gold Nanoparticles on a Green Support as a Reusable Catalyst for the Hydrogenation of Nitroarene and Quinoline.
    Adeyeye Nafiu S; Shaheen Shah S; Aziz A; Shaikh MN
    Chem Asian J; 2021 Jul; 16(14):1956-1966. PubMed ID: 34043274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly enantioselective hydrogenation of quinolines using phosphine-free chiral cationic ruthenium catalysts: scope, mechanism, and origin of enantioselectivity.
    Wang T; Zhuo LG; Li Z; Chen F; Ding Z; He Y; Fan QH; Xiang J; Yu ZX; Chan AS
    J Am Chem Soc; 2011 Jun; 133(25):9878-91. PubMed ID: 21574550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of Catalyst Isomers Using an
    Curley JB; Hert C; Bernskoetter WH; Hazari N; Mercado BQ
    Inorg Chem; 2022 Jan; 61(1):643-656. PubMed ID: 34955015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palladium Nanoparticles Supported on Cellulosic Paper as Multifunctional Catalyst for Coupling and Hydrogenation Reactions.
    Kalanthoden AN; Zahir MH; Aziz MA; Al-Najar B; Rani SK; Shaikh MN
    Chem Asian J; 2022 Feb; 17(3):e202101195. PubMed ID: 34970847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen Production and Storage on a Formic Acid/Bicarbonate Platform using Water-Soluble N-Heterocyclic Carbene Complexes of Late Transition Metals.
    Jantke D; Pardatscher L; Drees M; Cokoja M; Herrmann WA; Kühn FE
    ChemSusChem; 2016 Oct; 9(19):2849-2854. PubMed ID: 27618800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resin-Immobilized Palladium Nanoparticle Catalysts for Organic Reactions in Aqueous Media: Morphological Aspects.
    Mastrorilli P; Dell'Anna MM; Rizzuti A; Mali M; Zapparoli M; Leonelli C
    Molecules; 2015 Oct; 20(10):18661-84. PubMed ID: 26473823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric Hydrogenation of Quinoline Derivatives Catalyzed by Cationic Transition Metal Complexes of Chiral Diamine Ligands: Scope, Mechanism and Catalyst Recycling.
    Luo YE; He YM; Fan QH
    Chem Rec; 2016 Dec; 16(6):2693-2707. PubMed ID: 27555530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Design of Iron Diphosphine Complexes with Pendant Amines for Hydrogenation of CO2 to Methanol: A Mimic of [NiFe] Hydrogenase.
    Chen X; Jing Y; Yang X
    Chemistry; 2016 Jun; 22(26):8897-902. PubMed ID: 27225505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An unusual chemoselective hydrogenation of quinoline compounds using supported gold catalysts.
    Ren D; He L; Yu L; Ding RS; Liu YM; Cao Y; He HY; Fan KN
    J Am Chem Soc; 2012 Oct; 134(42):17592-8. PubMed ID: 23020578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired transition metal-organic hydride conjugates for catalysis of transfer hydrogenation: experiment and theory.
    McSkimming A; Chan B; Bhadbhade MM; Ball GE; Colbran SB
    Chemistry; 2015 Feb; 21(7):2821-34. PubMed ID: 25504622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.