BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35579622)

  • 1. High Throughput Nanoimaging of Thermal Conductivity and Interfacial Thermal Conductance.
    Wang M; Ramer G; Perez-Morelo DJ; Pavlidis G; Schwartz JJ; Yu L; Ilic R; Aksyuk VA; Centrone A
    Nano Lett; 2022 Jun; 22(11):4325-4332. PubMed ID: 35579622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophotonic Atomic Force Microscope Transducers Enable Chemical Composition and Thermal Conductivity Measurements at the Nanoscale.
    Chae J; An S; Ramer G; Stavila V; Holland G; Yoon Y; Talin AA; Allendorf M; Aksyuk VA; Centrone A
    Nano Lett; 2017 Sep; 17(9):5587-5594. PubMed ID: 28770607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy.
    Schwartz JJ; Pavlidis G; Centrone A
    Anal Chem; 2022 Sep; 94(38):13126-13135. PubMed ID: 36099442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linking Interfacial Bonding and Thermal Conductivity in Molecularly-Confined Polymer-Glass Nanocomposites with Ultra-High Interfacial Density.
    Wang Y; Collinson DW; Kwon H; Miller RD; Lionti K; Goodson KE; Dauskardt RH
    Small; 2023 Jul; 19(28):e2301383. PubMed ID: 36971287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unwrapping a full temporal cycle in time domain thermoreflectance for enhanced measurement sensitivity in thermally insulating materials.
    Donovan BF; Gray TL; Wilson AA; Warzoha RJ
    Rev Sci Instrum; 2022 Aug; 93(8):084904. PubMed ID: 36050106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contactless near-field scanning thermoreflectance imaging.
    Ezugwu S; Kazemian S; Choi DW; Fanchini G
    Nanoscale; 2017 Mar; 9(12):4097-4106. PubMed ID: 28276562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate measurement of in-plane thermal conductivity of layered materials without metal film transducer using frequency domain thermoreflectance.
    Qian X; Ding Z; Shin J; Schmidt AJ; Chen G
    Rev Sci Instrum; 2020 Jun; 91(6):064903. PubMed ID: 32611038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental setup for thermal measurements at the nanoscale using a SThM probe with niobium nitride thermometer.
    Swami R; Julié G; Le-Denmat S; Pernot G; Singhal D; Paterson J; Maire J; Motte JF; Paillet N; Guillou H; Gomès S; Bourgeois O
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38814363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AFM-thermoreflectance for simultaneous measurements of the topography and temperature.
    Rho J; Lim M; Lee SS; Lee BJ
    RSC Adv; 2018 Aug; 8(49):27616-27622. PubMed ID: 35542752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micromachined Chip Scale Thermal Sensor for Thermal Imaging.
    Shekhawat GS; Ramachandran S; Jiryaei Sharahi H; Sarkar S; Hujsak K; Li Y; Hagglund K; Kim S; Aden G; Chand A; Dravid VP
    ACS Nano; 2018 Feb; 12(2):1760-1767. PubMed ID: 29401382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution measurement of atomic force microscope cantilever resonance frequency.
    Xu B; Saygin V; Brown KA; Andersson SB
    Rev Sci Instrum; 2020 Dec; 91(12):123705. PubMed ID: 33379947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncertainty analysis of thermoreflectance measurements.
    Yang J; Ziade E; Schmidt AJ
    Rev Sci Instrum; 2016 Jan; 87(1):014901. PubMed ID: 26827342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide cantilever stiffness range cavity optomechanical sensors for atomic force microscopy.
    Liu Y; Miao H; Aksyuk V; Srinivasan K
    Opt Express; 2012 Jul; 20(16):18268-80. PubMed ID: 23038376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate measurements of cross-plane thermal conductivity of thin films by dual-frequency time-domain thermoreflectance (TDTR).
    Jiang P; Huang B; Koh YK
    Rev Sci Instrum; 2016 Jul; 87(7):075101. PubMed ID: 27475589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide bandwidth frequency-domain thermoreflectance: Volumetric heat capacity, anisotropic thermal conductivity, and thickness measurements.
    Ziade E
    Rev Sci Instrum; 2020 Dec; 91(12):124901. PubMed ID: 33379952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The qPlus sensor, a powerful core for the atomic force microscope.
    Giessibl FJ
    Rev Sci Instrum; 2019 Jan; 90(1):011101. PubMed ID: 30709191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale resolution scanning thermal microscopy using carbon nanotube tipped thermal probes.
    Tovee PD; Pumarol ME; Rosamond MC; Jones R; Petty MC; Zeze DA; Kolosov OV
    Phys Chem Chem Phys; 2014 Jan; 16(3):1174-81. PubMed ID: 24292551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optomechanical atomic force microscope.
    He F; Liu J; Zhu KD
    Nanotechnology; 2021 Feb; 32(8):085505. PubMed ID: 33142267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous measurement of in-plane and through-plane thermal conductivity using beam-offset frequency domain thermoreflectance.
    Rodin D; Yee SK
    Rev Sci Instrum; 2017 Jan; 88(1):014902. PubMed ID: 28147667
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.