BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 35579622)

  • 21. Frequency-domain probe beam deflection method for measurement of thermal conductivity of materials on micron length scale.
    Sun J; Lv G; Cahill DG
    Rev Sci Instrum; 2023 Jan; 94(1):014903. PubMed ID: 36725548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal Visualization of Buried Interfaces Enabled by Ratio Signal and Steady-State Heating of Time-Domain Thermoreflectance.
    Cheng Z; Mu F; Ji X; You T; Xu W; Suga T; Ou X; Cahill DG; Graham S
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31843-31851. PubMed ID: 34191480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantifying thermal transport in buried semiconductor nanostructures via cross-sectional scanning thermal microscopy.
    Spièce J; Evangeli C; Robson AJ; El Sachat A; Haenel L; Alonso MI; Garriga M; Robinson BJ; Oehme M; Schulze J; Alzina F; Sotomayor Torres C; Kolosov OV
    Nanoscale; 2021 Jun; 13(24):10829-10836. PubMed ID: 34114577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices.
    Cheng Z; Mu F; Yates L; Suga T; Graham S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallel nanoimaging and nanolithography using a heated microcantilever array.
    Somnath S; Kim HJ; Hu H; King WP
    Nanotechnology; 2014 Jan; 25(1):014001. PubMed ID: 24334342
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultra-high vacuum scanning thermal microscopy for nanometer resolution quantitative thermometry.
    Kim K; Jeong W; Lee W; Reddy P
    ACS Nano; 2012 May; 6(5):4248-57. PubMed ID: 22530657
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultra-sensitive thermal conductance measurement of one-dimensional nanostructures enhanced by differential bridge.
    Wingert MC; Chen ZC; Kwon S; Xiang J; Chen R
    Rev Sci Instrum; 2012 Feb; 83(2):024901. PubMed ID: 22380117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal property microscopy with frequency domain thermoreflectance.
    Yang J; Maragliano C; Schmidt AJ
    Rev Sci Instrum; 2013 Oct; 84(10):104904. PubMed ID: 24182148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Potential of interferometric cantilever detection and its application for SFM/AFM in liquids.
    Hoogenboom BW; Frederix PL; Fotiadis D; Hug HJ; Engel A
    Nanotechnology; 2008 Sep; 19(38):384019. PubMed ID: 21832578
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optomechanical transduction of an integrated silicon cantilever probe using a microdisk resonator.
    Srinivasan K; Miao H; Rakher MT; Davanço M; Aksyuk V
    Nano Lett; 2011 Feb; 11(2):791-7. PubMed ID: 21250747
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A MEMS nanoindenter with an integrated AFM cantilever gripper for nanomechanical characterization of compliant materials.
    Li Z; Gao S; Brand U; Hiller K; Wolff H
    Nanotechnology; 2020 Jul; 31(30):305502. PubMed ID: 32289758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Covalent bonding modulated graphene-metal interfacial thermal transport.
    Jiang T; Zhang X; Vishwanath S; Mu X; Kanzyuba V; Sokolov DA; Ptasinska S; Go DB; Xing HG; Luo T
    Nanoscale; 2016 Jun; 8(21):10993-1001. PubMed ID: 27174416
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of Bi
    Roy Chowdhury P; Shi J; Feng T; Ruan X
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):4636-4642. PubMed ID: 33433205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications.
    Chang G; Sun F; Wang L; Che Z; Wang X; Wang J; Kim MJ; Zhang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26507-26517. PubMed ID: 31283161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermodulation spectroscopy as an alternative to pump-probe for the measurement of fast dynamics at the nanometer scale.
    Borgani R; Haviland DB
    Rev Sci Instrum; 2019 Jan; 90(1):013705. PubMed ID: 30709170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging thermal conductivity with nanoscale resolution using a scanning spin probe.
    Laraoui A; Aycock-Rizzo H; Gao Y; Lu X; Riedo E; Meriles CA
    Nat Commun; 2015 Nov; 6():8954. PubMed ID: 26584676
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput heterodyne thermoreflectance: Application to thermal conductivity measurements of a Fe-Si-Ge thin film alloy library.
    d'Acremont Q; Pernot G; Rampnoux JM; Furlan A; Lacroix D; Ludwig A; Dilhaire S
    Rev Sci Instrum; 2017 Jul; 88(7):074902. PubMed ID: 28764526
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A direct differential method for measuring thermal conductivity of thin films.
    Zeng Y; Marconnet A
    Rev Sci Instrum; 2017 Apr; 88(4):044901. PubMed ID: 28456238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.