These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35579776)

  • 1. A neuropsin-based optogenetic tool for precise control of G
    Dai R; Yu T; Weng D; Li H; Cui Y; Wu Z; Guo Q; Zou H; Wu W; Gao X; Qi Z; Ren Y; Wang S; Li Y; Luo M
    Sci China Life Sci; 2022 Jul; 65(7):1271-1284. PubMed ID: 35579776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective optogenetic control of G
    Wagdi A; Malan D; Sathyanarayanan U; Beauchamp JS; Vogt M; Zipf D; Beiert T; Mansuroglu B; Dusend V; Meininghaus M; Schneider L; Kalthof B; Wiegert JS; König GM; Kostenis E; Patejdl R; Sasse P; Bruegmann T
    Nat Commun; 2022 Apr; 13(1):1765. PubMed ID: 35365606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optogenetic activation of Gq signalling modulates pacemaker activity of cardiomyocytes.
    Beiert T; Bruegmann T; Sasse P
    Cardiovasc Res; 2014 Jun; 102(3):507-16. PubMed ID: 24576953
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Chen IW; Ronzitti E; Lee BR; Daigle TL; Dalkara D; Zeng H; Emiliani V; Papagiakoumou E
    J Neurosci; 2019 May; 39(18):3484-3497. PubMed ID: 30833505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principles of Optogenetic Methods and Their Application to Cardiac Experimental Systems.
    Ferenczi EA; Tan X; Huang CL
    Front Physiol; 2019; 10():1096. PubMed ID: 31572204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optogenetic manipulation of Gq- and Gi/o-coupled receptor signaling in neurons and heart muscle cells.
    Hagio H; Koyama W; Hosaka S; Song AD; Narantsatsral J; Matsuda K; Sugihara T; Shimizu T; Koyanagi M; Terakita A; Hibi M
    Elife; 2023 Aug; 12():. PubMed ID: 37589544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of optogenetic actuators in cultured astrocytes.
    Figueiredo M; Lane S; Stout RF; Liu B; Parpura V; Teschemacher AG; Kasparov S
    Cell Calcium; 2014 Sep; 56(3):208-14. PubMed ID: 25109549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained Gq-Protein Signaling Disrupts Striatal Circuits via JNK.
    Bellocchio L; Ruiz-Calvo A; Chiarlone A; Cabanas M; Resel E; Cazalets JR; Blázquez C; Cho YH; Galve-Roperh I; Guzmán M
    J Neurosci; 2016 Oct; 36(41):10611-10624. PubMed ID: 27733612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic control of small GTPases reveals RhoA mediates intracellular calcium signaling.
    Inaba H; Miao Q; Nakata T
    J Biol Chem; 2021; 296():100290. PubMed ID: 33453281
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible optogenetic control of kinase activity during differentiation and embryonic development.
    Krishnamurthy VV; Khamo JS; Mei W; Turgeon AJ; Ashraf HM; Mondal P; Patel DB; Risner N; Cho EE; Yang J; Zhang K
    Development; 2016 Nov; 143(21):4085-4094. PubMed ID: 27697903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical Analysis of Low-power Bidirectional Optogenetic Control of High-frequency Neural Codes with Single Spike Resolution.
    Bansal H; Gupta N; Roy S
    Neuroscience; 2020 Nov; 449():165-188. PubMed ID: 32941934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The clinical potential of optogenetic interrogation of pathogenesis.
    Gao TT; Oh TJ; Mehta K; Huang YA; Camp T; Fan H; Han JW; Barnes CM; Zhang K
    Clin Transl Med; 2023 May; 13(5):e1243. PubMed ID: 37132114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chimeric human opsins as optogenetic light sensitisers.
    Hickey DG; Davies WIL; Hughes S; Rodgers J; Thavanesan N; MacLaren RE; Hankins MW
    J Exp Biol; 2021 Jul; 224(14):. PubMed ID: 34151984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in
    Oda S; Sato-Ebine E; Nakamura A; Kimura KD; Aoki K
    ACS Synth Biol; 2023 Mar; 12(3):700-708. PubMed ID: 36802521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-expressing fast channelrhodopsin with step-function opsin overcomes spike failure due to photocurrent desensitization in optogenetics: a theoretical study.
    Bansal H; Pyari G; Roy S
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35320791
    [No Abstract]   [Full Text] [Related]  

  • 16. In vivo application of optogenetics for neural circuit analysis.
    Han X
    ACS Chem Neurosci; 2012 Aug; 3(8):577-84. PubMed ID: 22896801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical analysis of optogenetic spiking with ChRmine, bReaChES and CsChrimson-expressing neurons for retinal prostheses.
    Bansal H; Gupta N; Roy S
    J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229315
    [No Abstract]   [Full Text] [Related]  

  • 18. Optogenetic Approaches for the Spatiotemporal Control of Signal Transduction Pathways.
    Kramer MM; Lataster L; Weber W; Radziwill G
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34069904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic interrogation of cell signalling: human neuropsin (hOPN5) represents a potent tool for controlling the Gq pathway with light.
    Leemann S; Kleinlogel S; Schneider-Warme F
    Pflugers Arch; 2022 Dec; 474(12):1217-1219. PubMed ID: 36319864
    [No Abstract]   [Full Text] [Related]  

  • 20. Optical control of ERK and AKT signaling promotes axon regeneration and functional recovery of PNS and CNS in
    Wang Q; Fan H; Li F; Skeeters SS; Krishnamurthy VV; Song Y; Zhang K
    Elife; 2020 Oct; 9():. PubMed ID: 33021199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.