These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35579776)

  • 21. Reversible Optogenetic Control of Subcellular Protein Localization in a Live Vertebrate Embryo.
    Buckley CE; Moore RE; Reade A; Goldberg AR; Weiner OD; Clarke JDW
    Dev Cell; 2016 Jan; 36(1):117-126. PubMed ID: 26766447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity.
    Shaaya M; Fauser J; Zhurikhina A; Conage-Pough JE; Huyot V; Brennan M; Flower CT; Matsche J; Khan S; Natarajan V; Rehman J; Kota P; White FM; Tsygankov D; Karginov AV
    Elife; 2020 Sep; 9():. PubMed ID: 32965214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans.
    Gengyo-Ando K; Kagawa-Nagamura Y; Ohkura M; Fei X; Chen M; Hashimoto K; Nakai J
    J Neurosci Methods; 2017 Jul; 286():56-68. PubMed ID: 28506879
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice.
    Spoida K; Masseck OA; Deneris ES; Herlitze S
    Proc Natl Acad Sci U S A; 2014 Apr; 111(17):6479-84. PubMed ID: 24733892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CaMello-XR enables visualization and optogenetic control of G
    Eickelbeck D; Karapinar R; Jack A; Suess ST; Barzan R; Azimi Z; Surdin T; Grömmke M; Mark MD; Gerwert K; Jancke D; Wahle P; Spoida K; Herlitze S
    Commun Biol; 2019; 2():60. PubMed ID: 30793039
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Melanopsin for precise optogenetic activation of astrocyte-neuron networks.
    Mederos S; Hernández-Vivanco A; Ramírez-Franco J; Martín-Fernández M; Navarrete M; Yang A; Boyden ES; Perea G
    Glia; 2019 May; 67(5):915-934. PubMed ID: 30632636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The expanding role of split protein complementation in opsin-free optogenetics.
    Skeeters SS; Camp T; Fan H; Zhang K
    Curr Opin Pharmacol; 2022 Aug; 65():102236. PubMed ID: 35609383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos.
    Spencer Adams D; Lemire JM; Kramer RH; Levin M
    Int J Dev Biol; 2014; 58(10-12):851-61. PubMed ID: 25896279
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vivo optogenetic stimulation of the rodent central nervous system.
    Sidor MM; Davidson TJ; Tye KM; Warden MR; Diesseroth K; McClung CA
    J Vis Exp; 2015 Jan; (95):51483. PubMed ID: 25651158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrasound-Triggered In Situ Photon Emission for Noninvasive Optogenetics.
    Wang W; Wu X; Kevin Tang KW; Pyatnitskiy I; Taniguchi R; Lin P; Zhou R; Capocyan SLC; Hong G; Wang H
    J Am Chem Soc; 2023 Jan; 145(2):1097-1107. PubMed ID: 36606703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetics in bacteria - applications and opportunities.
    Lindner F; Diepold A
    FEMS Microbiol Rev; 2022 Mar; 46(2):. PubMed ID: 34791201
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optical Activation of TrkB Signaling.
    Huang P; Liu A; Song Y; Hope JM; Cui B; Duan L
    J Mol Biol; 2020 Jun; 432(13):3761-3770. PubMed ID: 32422149
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An economical and highly adaptable optogenetics system for individual and population-level manipulation of Caenorhabditis elegans.
    Koopman M; Janssen L; Nollen EAA
    BMC Biol; 2021 Aug; 19(1):170. PubMed ID: 34429103
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A flexible two-photon fiberscope for fast activity imaging and precise optogenetic photostimulation of neurons in freely moving mice.
    Accanto N; Blot FGC; Lorca-Cámara A; Zampini V; Bui F; Tourain C; Badt N; Katz O; Emiliani V
    Neuron; 2023 Jan; 111(2):176-189.e6. PubMed ID: 36395773
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optogenetic approaches to control Ca
    Nguyen NT; Ma G; Zhou Y; Jing J
    Curr Opin Physiol; 2020 Oct; 17():187-196. PubMed ID: 33184610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 38. At Light Speed: Advances in Optogenetic Systems for Regulating Cell Signaling and Behavior.
    Repina NA; Rosenbloom A; Mukherjee A; Schaffer DV; Kane RS
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():13-39. PubMed ID: 28592174
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.
    Glock C; Nagpal J; Gottschalk A
    Methods Mol Biol; 2015; 1327():87-103. PubMed ID: 26423970
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.