These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 35579810)
1. Intelligent Telehealth in Pharmacovigilance: A Future Perspective. Edrees H; Song W; Syrowatka A; Simona A; Amato MG; Bates DW Drug Saf; 2022 May; 45(5):449-458. PubMed ID: 35579810 [TBL] [Abstract][Full Text] [Related]
2. Validation of Artificial Intelligence to Support the Automatic Coding of Patient Adverse Drug Reaction Reports, Using Nationwide Pharmacovigilance Data. Martin GL; Jouganous J; Savidan R; Bellec A; Goehrs C; Benkebil M; Miremont G; Micallef J; Salvo F; Pariente A; Létinier L; Drug Saf; 2022 May; 45(5):535-548. PubMed ID: 35579816 [TBL] [Abstract][Full Text] [Related]
3. Natural Language Processing and Its Implications for the Future of Medication Safety: A Narrative Review of Recent Advances and Challenges. Wong A; Plasek JM; Montecalvo SP; Zhou L Pharmacotherapy; 2018 Aug; 38(8):822-841. PubMed ID: 29884988 [TBL] [Abstract][Full Text] [Related]
4. Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets. Li Y; Tao W; Li Z; Sun Z; Li F; Fenton S; Xu H; Tao C J Biomed Inform; 2024 Apr; 152():104621. PubMed ID: 38447600 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligent Context-Aware Machine-Learning Tool to Detect Adverse Drug Events from Social Media Platforms. Roosan D; Law AV; Roosan MR; Li Y J Med Toxicol; 2022 Oct; 18(4):311-320. PubMed ID: 36097239 [TBL] [Abstract][Full Text] [Related]
6. Artificial Intelligence for Drug Toxicity and Safety. Basile AO; Yahi A; Tatonetti NP Trends Pharmacol Sci; 2019 Sep; 40(9):624-635. PubMed ID: 31383376 [TBL] [Abstract][Full Text] [Related]
7. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature. Salas M; Petracek J; Yalamanchili P; Aimer O; Kasthuril D; Dhingra S; Junaid T; Bostic T Pharmaceut Med; 2022 Oct; 36(5):295-306. PubMed ID: 35904529 [TBL] [Abstract][Full Text] [Related]
8. BERT-based language model for accurate drug adverse event extraction from social media: implementation, evaluation, and contributions to pharmacovigilance practices. Dong F; Guo W; Liu J; Patterson TA; Hong H Front Public Health; 2024; 12():1392180. PubMed ID: 38716250 [TBL] [Abstract][Full Text] [Related]
9. Artificial intelligence in pharmacovigilance: Do we need explainability? Hauben M Pharmacoepidemiol Drug Saf; 2022 Dec; 31(12):1311-1316. PubMed ID: 35747938 [No Abstract] [Full Text] [Related]
10. Adverse Drug Reaction Case Safety Practices in Large Biopharmaceutical Organizations from 2007 to 2017: An Industry Survey. Stergiopoulos S; Fehrle M; Caubel P; Tan L; Jebson L Pharmaceut Med; 2019 Dec; 33(6):499-510. PubMed ID: 31933240 [TBL] [Abstract][Full Text] [Related]
11. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. Sarker A; Gonzalez G J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103 [TBL] [Abstract][Full Text] [Related]
12. What place for intelligent automation and artificial intelligence to preserve and strengthen vigilance expertise in the face of increasing declarations? Pariente A; Micallef J; Lahouegue A; Molimard M; Auffret M; Chouchana L; Denis B; Faillie JL; Grandvuillemin A; Letinier L; Pierron E; Pons C; Pujade I; Rubino H; Salvo F Therapie; 2023; 78(1):131-143. PubMed ID: 36572627 [TBL] [Abstract][Full Text] [Related]
13. Artificial Intelligence in Pharmacovigilance and COVID-19. Bhardwaj K; Alam R; Pandeya A; Sharma PK Curr Drug Saf; 2023; 18(1):5-14. PubMed ID: 35382726 [TBL] [Abstract][Full Text] [Related]
14. Will the future of pharmacovigilance be more automated? Salvo F; Micallef J; Lahouegue A; Chouchana L; Létinier L; Faillie JL; Pariente A Expert Opin Drug Saf; 2023; 22(7):541-548. PubMed ID: 37435796 [TBL] [Abstract][Full Text] [Related]
15. Navigating the Complexities of Artificial Intelligence-Enabled Real-World Data Collection for Oncology Pharmacovigilance. Gallifant J; Celi LA; Sharon E; Bitterman DS JCO Clin Cancer Inform; 2024 May; 8():e2400051. PubMed ID: 38713889 [TBL] [Abstract][Full Text] [Related]
16. Artificial Intelligence and Data Mining for the Pharmacovigilance of Drug-Drug Interactions. Hauben M Clin Ther; 2023 Feb; 45(2):117-133. PubMed ID: 36732152 [TBL] [Abstract][Full Text] [Related]
17. Artificial Intelligence for Unstructured Healthcare Data: Application to Coding of Patient Reporting of Adverse Drug Reactions. Létinier L; Jouganous J; Benkebil M; Bel-Létoile A; Goehrs C; Singier A; Rouby F; Lacroix C; Miremont G; Micallef J; Salvo F; Pariente A Clin Pharmacol Ther; 2021 Aug; 110(2):392-400. PubMed ID: 33866552 [TBL] [Abstract][Full Text] [Related]
18. Artificial Intelligence Within Pharmacovigilance: A Means to Identify Cognitive Services and the Framework for Their Validation. Mockute R; Desai S; Perera S; Assuncao B; Danysz K; Tetarenko N; Gaddam D; Abatemarco D; Widdowson M; Beauchamp S; Cicirello S; Mingle E Pharmaceut Med; 2019 Apr; 33(2):109-120. PubMed ID: 31933254 [TBL] [Abstract][Full Text] [Related]
19. Drug safety in Africa: a review of systems and resources for pharmacovigilance. Ndagije HB; Walusimbi D; Atuhaire J; Ampaire S Expert Opin Drug Saf; 2023; 22(10):891-895. PubMed ID: 37676033 [TBL] [Abstract][Full Text] [Related]
20. Natural Language Processing for EHR-Based Pharmacovigilance: A Structured Review. Luo Y; Thompson WK; Herr TM; Zeng Z; Berendsen MA; Jonnalagadda SR; Carson MB; Starren J Drug Saf; 2017 Nov; 40(11):1075-1089. PubMed ID: 28643174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]