These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 35579810)

  • 21. Detecting adverse drug reactions in discharge summaries of electronic medical records using Readpeer.
    Tang Y; Yang J; Ang PS; Dorajoo SR; Foo B; Soh S; Tan SH; Tham MY; Ye Q; Shek L; Sung C; Tung A
    Int J Med Inform; 2019 Aug; 128():62-70. PubMed ID: 31160013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving drug safety with adverse event detection using natural language processing.
    Botsis T; Kreimeyer K
    Expert Opin Drug Saf; 2023; 22(8):659-668. PubMed ID: 37339273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Artificial intelligence in pharmacovigilance: A regulatory perspective on explainability.
    Pinheiro LC; Kurz X
    Pharmacoepidemiol Drug Saf; 2022 Dec; 31(12):1308-1310. PubMed ID: 35959980
    [No Abstract]   [Full Text] [Related]  

  • 24. A Pilot, Predictive Surveillance Model in Pharmacovigilance Using Machine Learning Approaches.
    De Abreu Ferreira R; Zhong S; Moureaud C; Le MT; Rothstein A; Li X; Wang L; Patwardhan M
    Adv Ther; 2024 Jun; 41(6):2435-2445. PubMed ID: 38704799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Innovation in Pharmacovigilance: Use of Artificial Intelligence in Adverse Event Case Processing.
    Schmider J; Kumar K; LaForest C; Swankoski B; Naim K; Caubel PM
    Clin Pharmacol Ther; 2019 Apr; 105(4):954-961. PubMed ID: 30303528
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards Drug Safety Surveillance and Pharmacovigilance: Current Progress in Detecting Medication and Adverse Drug Events from Electronic Health Records.
    Liu F; Jagannatha A; Yu H
    Drug Saf; 2019 Jan; 42(1):95-97. PubMed ID: 30649734
    [No Abstract]   [Full Text] [Related]  

  • 27. Causal Deep Learning for the Detection of Adverse Drug Reactions: Drug-Induced Acute Kidney Injury as a Case Study.
    Dimitsaki S; Natsiavas P; Jaulent MC
    Stud Health Technol Inform; 2024 Aug; 316():803-807. PubMed ID: 39176914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Artificial Intelligence in Pharmacovigilance: An Introduction to Terms, Concepts, Applications, and Limitations.
    Aronson JK
    Drug Saf; 2022 May; 45(5):407-418. PubMed ID: 35579806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Making Sense of Pharmacovigilance and Drug Adverse Event Reporting: Comparative Similarity Association Analysis Using AI Machine Learning Algorithms in Dogs and Cats.
    Xu X; Mazloom R; Goligerdian A; Staley J; Amini M; Wyckoff GJ; Riviere J; Jaberi-Douraki M
    Top Companion Anim Med; 2019 Dec; 37():100366. PubMed ID: 31837760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pharmacovigilance using clinical notes.
    LePendu P; Iyer SV; Bauer-Mehren A; Harpaz R; Mortensen JM; Podchiyska T; Ferris TA; Shah NH
    Clin Pharmacol Ther; 2013 Jun; 93(6):547-55. PubMed ID: 23571773
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing Pharmacovigilance in Sub-Saharan Africa Through Training and Mentoring: A GSK Pilot Initiative in Malawi.
    Jusot V; Chimimba F; Dzabala N; Menang O; Cole J; Gardiner G; Ofori-Anyinam O; Oladehin O; Sambakunsi C; Kawaye M; Stegmann JU; Guerra Mendoza Y
    Drug Saf; 2020 Jun; 43(6):583-593. PubMed ID: 32239447
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Knowledge Graphs in Pharmacovigilance: A Scoping Review.
    Hauben M; Rafi M; Abdelaziz I; Hassanzadeh O
    Clin Ther; 2024 Jul; 46(7):544-554. PubMed ID: 38981792
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An innovative method to strengthen evidence for potential drug safety signals using Electronic Health Records.
    Abedian Kalkhoran H; Zwaveling J; van Hunsel F; Kant A
    J Med Syst; 2024 May; 48(1):51. PubMed ID: 38753223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. On the creation of a clinical gold standard corpus in Spanish: Mining adverse drug reactions.
    Oronoz M; Gojenola K; Pérez A; de Ilarraza AD; Casillas A
    J Biomed Inform; 2015 Aug; 56():318-32. PubMed ID: 26141794
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of Natural Language Processing (NLP) systems to annotate drug product labeling with MedDRA terminology.
    Ly T; Pamer C; Dang O; Brajovic S; Haider S; Botsis T; Milward D; Winter A; Lu S; Ball R
    J Biomed Inform; 2018 Jul; 83():73-86. PubMed ID: 29860093
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Methods for Detecting Pediatric Adverse Drug Reactions From the Electronic Medical Record.
    Joyner LM; Alicea LA; Goldman JL; Suppes SL; Tillman EM
    J Clin Pharmacol; 2021 Nov; 61(11):1479-1484. PubMed ID: 34031886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pharmacovigilance in China: Evolution and future challenges.
    Song H; Pei X; Liu Z; Shen C; Sun J; Liu Y; Zhou L; Sun F; Xiao X
    Br J Clin Pharmacol; 2023 Feb; 89(2):510-522. PubMed ID: 35165914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Artificial Intelligence" for Pharmacovigilance: Ready for Prime Time?
    Ball R; Dal Pan G
    Drug Saf; 2022 May; 45(5):429-438. PubMed ID: 35579808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of text processing methods in social media-based signal detection.
    Gavrielov-Yusim N; Kürzinger ML; Nishikawa C; Pan C; Pouget J; Epstein LB; Golant Y; Tcherny-Lessenot S; Lin S; Hamelin B; Juhaeri J
    Pharmacoepidemiol Drug Saf; 2019 Oct; 28(10):1309-1317. PubMed ID: 31392844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.