BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 35579811)

  • 1. Machine Learning in Causal Inference: Application in Pharmacovigilance.
    Zhao Y; Yu Y; Wang H; Li Y; Deng Y; Jiang G; Luo Y
    Drug Saf; 2022 May; 45(5):459-476. PubMed ID: 35579811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature engineering and machine learning for causality assessment in pharmacovigilance: Lessons learned from application to the FDA Adverse Event Reporting System.
    Kreimeyer K; Dang O; Spiker J; Muñoz MA; Rosner G; Ball R; Botsis T
    Comput Biol Med; 2021 Aug; 135():104517. PubMed ID: 34130003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using computable knowledge mined from the literature to elucidate confounders for EHR-based pharmacovigilance.
    Malec SA; Wei P; Bernstam EV; Boyce RD; Cohen T
    J Biomed Inform; 2021 May; 117():103719. PubMed ID: 33716168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IL-4/13 Blockade and sleep-related adverse drug reactions in over 37,000 Dupilumab reports from the World Health Organization Individual Case Safety reporting pharmacovigilance database (VigiBase™): a big data and machine learning analysis.
    Alroobaea R; Rubaiee S; Hanbazazah AS; Jahrami H; Garbarino S; Damiani G; Wu J; Bragazzi NL
    Eur Rev Med Pharmacol Sci; 2022 Jun; 26(11):4074-4081. PubMed ID: 35731078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Use of Artificial Intelligence in Pharmacovigilance: A Systematic Review of the Literature.
    Salas M; Petracek J; Yalamanchili P; Aimer O; Kasthuril D; Dhingra S; Junaid T; Bostic T
    Pharmaceut Med; 2022 Oct; 36(5):295-306. PubMed ID: 35904529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bidirectional Encoder Representations from Transformers-like large language models in patient safety and pharmacovigilance: A comprehensive assessment of causal inference implications.
    Wang X; Xu X; Liu Z; Tong W
    Exp Biol Med (Maywood); 2023 Nov; 248(21):1908-1917. PubMed ID: 38084745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-World Evidence, Causal Inference, and Machine Learning.
    Crown WH
    Value Health; 2019 May; 22(5):587-592. PubMed ID: 31104739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging Machine Learning to Facilitate Individual Case Causality Assessment of Adverse Drug Reactions.
    Cherkas Y; Ide J; van Stekelenborg J
    Drug Saf; 2022 May; 45(5):571-582. PubMed ID: 35579819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mining heterogeneous networks with topological features constructed from patient-contributed content for pharmacovigilance.
    Yang CC; Yang H
    Artif Intell Med; 2018 Aug; 90():42-52. PubMed ID: 30093253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning on adverse drug reactions for pharmacovigilance.
    Lee CY; Chen YP
    Drug Discov Today; 2019 Jul; 24(7):1332-1343. PubMed ID: 30876845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contribution of Causality Assessment for an Automated Detection of Safety Signals: An Example Using the French Pharmacovigilance Database.
    Berbain T; Pariente A; Miremont-Salamé G; Grandvuillemin A; Micallef J; Chouchana L; Benkebil M; Théophile H;
    Drug Saf; 2020 Mar; 43(3):243-253. PubMed ID: 31974775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference.
    Blakely T; Lynch J; Simons K; Bentley R; Rose S
    Int J Epidemiol; 2021 Jan; 49(6):2058-2064. PubMed ID: 31298274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing a novel causal inference algorithm for personalized biomedical causal graph learning using meta machine learning.
    Wu H; Shi W; Wang MD
    BMC Med Inform Decis Mak; 2024 May; 24(1):137. PubMed ID: 38802809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Invited Commentary: Machine Learning in Causal Inference-How Do I Love Thee? Let Me Count the Ways.
    Balzer LB; Petersen ML
    Am J Epidemiol; 2021 Aug; 190(8):1483-1487. PubMed ID: 33751059
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning Causal Effects From Observational Data in Healthcare: A Review and Summary.
    Shi J; Norgeot B
    Front Med (Lausanne); 2022; 9():864882. PubMed ID: 35872797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning in the estimation of causal effects: targeted minimum loss-based estimation and double/debiased machine learning.
    Díaz I
    Biostatistics; 2020 Apr; 21(2):353-358. PubMed ID: 31742333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Similarity-based machine learning support vector machine predictor of drug-drug interactions with improved accuracies.
    Song D; Chen Y; Min Q; Sun Q; Ye K; Zhou C; Yuan S; Sun Z; Liao J
    J Clin Pharm Ther; 2019 Apr; 44(2):268-275. PubMed ID: 30565313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying Actionability as a Key Factor for the Adoption of 'Intelligent' Systems for Drug Safety: Lessons Learned from a User-Centred Design Approach.
    Gavriilidis GI; Dimitriadis VK; Jaulent MC; Natsiavas P
    Drug Saf; 2021 Nov; 44(11):1165-1178. PubMed ID: 34674190
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of Artificial Intelligence to Support the Automatic Coding of Patient Adverse Drug Reaction Reports, Using Nationwide Pharmacovigilance Data.
    Martin GL; Jouganous J; Savidan R; Bellec A; Goehrs C; Benkebil M; Miremont G; Micallef J; Salvo F; Pariente A; Létinier L;
    Drug Saf; 2022 May; 45(5):535-548. PubMed ID: 35579816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
    Eshleman R; Singh R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.