These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35579929)

  • 21. Spatially confined assembly of nanoparticles.
    Jiang L; Chen X; Lu N; Chi L
    Acc Chem Res; 2014 Oct; 47(10):3009-17. PubMed ID: 25244100
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Directed Self-Assembly and Pattern Transfer of Five Nanometer Block Copolymer Lamellae.
    Lane AP; Yang X; Maher MJ; Blachut G; Asano Y; Someya Y; Mallavarapu A; Sirard SM; Ellison CJ; Willson CG
    ACS Nano; 2017 Aug; 11(8):7656-7665. PubMed ID: 28700207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Large Area Fishnet Optical Metamaterial Structures Operational at Near-IR Wavelengths.
    Dutta N; Mirza IO; Shi S; Prather DW
    Materials (Basel); 2010 Dec; 3(12):5283-5292. PubMed ID: 28883383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.
    Chang T; Huang H; He T
    Macromol Rapid Commun; 2016 Jan; 37(2):161-7. PubMed ID: 26513110
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple top-down/bottom-up approach to sectored, ordered arrays of nanoscopic elements using block copolymers.
    Park S; Yavuzcetin O; Kim B; Tuominen MT; Russell TP
    Small; 2009 May; 5(9):1064-9. PubMed ID: 19189333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dry-Etching Processes for High-Aspect-Ratio Features with Sub-10 nm Resolution High-χ Block Copolymers.
    Pound-Lana G; Bézard P; Petit-Etienne C; Cavalaglio S; Cunge G; Cabannes-Boué B; Fleury G; Chevalier X; Zelsmann M
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49184-49193. PubMed ID: 34636239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of Ordered, Porous (Sub-25 nm Dimensions) Surface Membrane Structures Using a Block Copolymer Approach.
    Ghoshal T; Holmes JD; Morris MA
    Sci Rep; 2018 May; 8(1):7252. PubMed ID: 29740003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of Ultra-High Aspect Ratio (>420:1) Al
    Li H; Xie C
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32260150
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.
    Shin WJ; Basarir F; Yoon TH; Lee JS
    Langmuir; 2009 Apr; 25(6):3344-8. PubMed ID: 19708134
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fabrication of nanopore arrays and ultrathin silicon nitride membranes by block-copolymer-assisted lithography.
    Popa AM; Niedermann P; Heinzelmann H; Hubbell JA; Pugin R
    Nanotechnology; 2009 Dec; 20(48):485303. PubMed ID: 19880976
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbohydrate-based block copolymer systems: directed self-assembly for nanolithography applications.
    Otsuka I; Nilsson N; Suyatin DB; Maximov I; Borsali R
    Soft Matter; 2017 Oct; 13(40):7406-7411. PubMed ID: 28959807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of ultra-dense sub-10 nm in-plane Si nanowire arrays by using a novel block copolymer method: optical properties.
    Ghoshal T; Ntaras C; O'Connell J; Shaw MT; Holmes JD; Avgeropoulos A; Morris MA
    Nanoscale; 2016 Jan; 8(4):2177-87. PubMed ID: 26731306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fluorescence Switchable Block Copolymer Particles with Doubly Alternate-Layered Nanoparticle Arrays.
    Kim T; Xu M; Lee YJ; Ku KH; Shin DJ; Lee DC; Jang SG; Yun H; Kim BJ
    Small; 2021 Jul; 17(28):e2101222. PubMed ID: 34114319
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoporous Thin Films and Binary Nanoparticle Superlattices Created by Directed Self-Assembly of Block Copolymer Hybrid Materials.
    Pietsch T; Müller-Buschbaum P; Mahltig B; Fahmi A
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12440-9. PubMed ID: 25647185
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of e-beam lithography parameters for nanofabrication of sub-50 nm gold nanowires and nanogaps based on a bilayer lift-off process.
    Sahin O; Albayrak OM; Yapici MK
    Nanotechnology; 2024 Jul; 35(39):. PubMed ID: 38959870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Novel Synthesis of ZnO Nanoflower Arrays Using a Lift-Off Technique with Different Thicknesses of Al Sacrificial Layers on a Patterned Sapphire Substrate.
    Tseng HW; Wang CS; Wang FH; Liu HW; Yang CF
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214941
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Universal pattern transfer methods for metal nanostructures by block copolymer lithography.
    Tu KH; Bai W; Liontos G; Ntetsikas K; Avgeropoulos A; Ross CA
    Nanotechnology; 2015 Sep; 26(37):375301. PubMed ID: 26302968
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of Entrapped Solvent on the Evolution of Lateral Order in Self-Assembled P(S-r-MMA)/PS-b-PMMA Systems with Different Thicknesses.
    Giammaria TJ; Ferrarese Lupi F; Seguini G; Sparnacci K; Antonioli D; Gianotti V; Laus M; Perego M
    ACS Appl Mater Interfaces; 2017 Sep; 9(37):31215-31223. PubMed ID: 28195457
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Growth of Highly-Ordered Metal Nanoparticle Arrays in the Dimpled Pores of an Anodic Aluminum Oxide Template.
    Farmer G; Abraham J; Littler C; Syllaios AJ; Philipose U
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432214
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competitive Registration Fields for The Development of Complex Block Copolymer Structures by A Layer-by-Layer Approach.
    Demazy N; Argudo PG; Fleury G
    Small; 2023 Feb; 19(7):e2205254. PubMed ID: 36504447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.