These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35579945)

  • 1. Size effect and mucus role on the intestinal toxicity of the E551 food additive and engineered silica nanoparticles.
    Zaiter T; Cornu R; Millot N; Herbst M; Pellequer Y; Moarbess G; Martin H; Diab-Assaf M; Béduneau A
    Nanotoxicology; 2022 Mar; 16(2):165-182. PubMed ID: 35579945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small silica nanoparticles transiently modulate the intestinal permeability by actin cytoskeleton disruption in both Caco-2 and Caco-2/HT29-MTX models.
    Cornu R; Chrétien C; Pellequer Y; Martin H; Béduneau A
    Arch Toxicol; 2020 Apr; 94(4):1191-1202. PubMed ID: 32162006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the effects of differently produced synthetic amorphous silica (E 551) on the integrity and functionality of the human intestinal barrier using an advanced in vitro co-culture model.
    Hempt C; Hirsch C; Hannig Y; Rippl A; Wick P; Buerki-Thurnherr T
    Arch Toxicol; 2021 Mar; 95(3):837-852. PubMed ID: 33319326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food-grade TiO
    Talbot P; Radziwill-Bienkowska JM; Kamphuis JBJ; Steenkeste K; Bettini S; Robert V; Noordine ML; Mayeur C; Gaultier E; Langella P; Robbe-Masselot C; Houdeau E; Thomas M; Mercier-Bonin M
    J Nanobiotechnology; 2018 Jun; 16(1):53. PubMed ID: 29921300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The impact of synthetic amorphous silica (E 551) on differentiated Caco-2 cells, a model for the human intestinal epithelium.
    Hempt C; Kaiser JP; Scholder O; Buerki-Thurnherr T; Hofmann H; Rippl A; Schuster TB; Wick P; Hirsch C
    Toxicol In Vitro; 2020 Sep; 67():104903. PubMed ID: 32473318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-exposure to commercial food product ingredient E341 and E551 triggers cytotoxicity in human mesenchymal stem cells.
    Athinarayanan J; Khaibary AAL; Periasamy VS; Alatiah KA; Shamlan G; Alsawmahi ON; Alshatwi AA
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):33264-33274. PubMed ID: 36474033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.
    Peters R; Kramer E; Oomen AG; Rivera ZE; Oegema G; Tromp PC; Fokkink R; Rietveld A; Marvin HJ; Weigel S; Peijnenburg AA; Bouwmeester H
    ACS Nano; 2012 Mar; 6(3):2441-51. PubMed ID: 22364219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of the toxicity of food additive silica nanoparticles on gastrointestinal cells.
    Yang YX; Song ZM; Cheng B; Xiang K; Chen XX; Liu JH; Cao A; Wang Y; Liu Y; Wang H
    J Appl Toxicol; 2014 Apr; 34(4):424-35. PubMed ID: 24302550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells.
    Athinarayanan J; Periasamy VS; Alsaif MA; Al-Warthan AA; Alshatwi AA
    Cell Biol Toxicol; 2014 Apr; 30(2):89-100. PubMed ID: 24526451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an advanced intestinal in vitro triple culture permeability model to study transport of nanoparticles.
    Schimpel C; Teubl B; Absenger M; Meindl C; Fröhlich E; Leitinger G; Zimmer A; Roblegg E
    Mol Pharm; 2014 Mar; 11(3):808-18. PubMed ID: 24502507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the usefulness of the complex in vitro intestinal epithelial model Caco-2/HT29/Raji-B in nanotoxicology.
    García-Rodríguez A; Vila L; Cortés C; Hernández A; Marcos R
    Food Chem Toxicol; 2018 Mar; 113():162-170. PubMed ID: 29421767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of the fate and biological responses of food additive silica particles in commercial foods.
    Yu J; Kim YH; Kim HM; Oh JM; Kim YR; Choi SJ
    Food Chem; 2020 Nov; 331():127304. PubMed ID: 32562980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials.
    Ude VC; Brown DM; Stone V; Johnston HJ
    J Nanobiotechnology; 2019 May; 17(1):70. PubMed ID: 31113462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virus-Mimicking Mesoporous Silica Nanoparticles with an Electrically Neutral and Hydrophilic Surface to Improve the Oral Absorption of Insulin by Breaking Through Dual Barriers of the Mucus Layer and the Intestinal Epithelium.
    Zhang Y; Xiong M; Ni X; Wang J; Rong H; Su Y; Yu S; Mohammad IS; Leung SSY; Hu H
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):18077-18088. PubMed ID: 33830730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proinflammatory Effects of Pyrogenic and Precipitated Amorphous Silica Nanoparticles in Innate Immunity Cells.
    Di Cristo L; Movia D; Bianchi MG; Allegri M; Mohamed BM; Bell AP; Moore C; Pinelli S; Rasmussen K; Riego-Sintes J; Prina-Mello A; Bussolati O; Bergamaschi E
    Toxicol Sci; 2016 Mar; 150(1):40-53. PubMed ID: 26612840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical and toxicological evaluation of silica nanoparticles suitable for food and consumer products collected by following the EC recommendation.
    Contado C; Mejia J; Lozano García O; Piret JP; Dumortier E; Toussaint O; Lucas S
    Anal Bioanal Chem; 2016 Jan; 408(1):271-86. PubMed ID: 26507331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous in vitro exposure of intestinal epithelial cells to E171 food additive causes oxidative stress, inducing oxidation of DNA bases but no endoplasmic reticulum stress.
    Dorier M; Béal D; Marie-Desvergne C; Dubosson M; Barreau F; Houdeau E; Herlin-Boime N; Carriere M
    Nanotoxicology; 2017 Aug; 11(6):751-761. PubMed ID: 28671030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures.
    Akbari A; Lavasanifar A; Wu J
    Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toxicity to RAW264.7 Macrophages of Silica Nanoparticles and the E551 Food Additive, in Combination with Genotoxic Agents.
    Dussert F; Arthaud PA; Arnal ME; Dalzon B; Torres A; Douki T; Herlin N; Rabilloud T; Carriere M
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32708108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biokinetics of food additive silica nanoparticles and their interactions with food components.
    Lee JA; Kim MK; Song JH; Jo MR; Yu J; Kim KM; Kim YR; Oh JM; Choi SJ
    Colloids Surf B Biointerfaces; 2017 Feb; 150():384-392. PubMed ID: 27842933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.