BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35579997)

  • 21. CD103
    Edwards J; Wilmott JS; Madore J; Gide TN; Quek C; Tasker A; Ferguson A; Chen J; Hewavisenti R; Hersey P; Gebhardt T; Weninger W; Britton WJ; Saw RPM; Thompson JF; Menzies AM; Long GV; Scolyer RA; Palendira U
    Clin Cancer Res; 2018 Jul; 24(13):3036-3045. PubMed ID: 29599411
    [No Abstract]   [Full Text] [Related]  

  • 22. LAG3 (CD223) and autoimmunity: Emerging evidence.
    Hu S; Liu X; Li T; Li Z; Hu F
    J Autoimmun; 2020 Aug; 112():102504. PubMed ID: 32576412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional Exhaustion of HBV-Specific CD8 T Cells Impedes PD-L1 Blockade Efficacy in Chronic HBV Infection.
    Ferrando-Martinez S; Snell Bennett A; Lino E; Gehring AJ; Feld J; Janssen HLA; Robbins SH
    Front Immunol; 2021; 12():648420. PubMed ID: 34589081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microsatellite Instability Predicts Response to Anti-PD1 Immunotherapy in Metastatic Melanoma.
    Roncati L
    Acta Dermatovenerol Croat; 2018 Dec; 26(4):341-343. PubMed ID: 30665488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular and Clinical Characterization of LAG3 in Breast Cancer Through 2994 Samples.
    Liu Q; Qi Y; Zhai J; Kong X; Wang X; Wang Z; Fang Y; Wang J
    Front Immunol; 2021; 12():599207. PubMed ID: 34267742
    [TBL] [Abstract][Full Text] [Related]  

  • 26. LAG3 blockade coordinates with microwave ablation to promote CD8
    Shao D; Chen Y; Huang H; Liu Y; Chen J; Zhu D; Zheng X; Chen L; Jiang J
    J Transl Med; 2022 Sep; 20(1):433. PubMed ID: 36180876
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research Progress Concerning Dual Blockade of Lymphocyte-Activation Gene 3 and Programmed Death-1/Programmed Death-1 Ligand-1 Blockade in Cancer Immunotherapy: Preclinical and Clinical Evidence of This Potentially More Effective Immunotherapy Strategy.
    Qi Y; Chen L; Liu Q; Kong X; Fang Y; Wang J
    Front Immunol; 2020; 11():563258. PubMed ID: 33488573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular, clinicopathological, and immune correlates of LAG3 promoter DNA methylation in melanoma.
    Fröhlich A; Sirokay J; Fietz S; Vogt TJ; Dietrich J; Zarbl R; Florin M; Kuster P; Saavedra G; Valladolid SR; Hoffmann F; Flatz L; Ring SS; Golletz C; Pietsch T; Strieth S; Brossart P; Gielen GH; Kristiansen G; Bootz F; Landsberg J; Dietrich D
    EBioMedicine; 2020 Sep; 59():102962. PubMed ID: 32861198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a novel human phage display-derived anti-LAG3 scFv antibody targeting CD8
    Ascione A; Arenaccio C; Mallano A; Flego M; Gellini M; Andreotti M; Fenwick C; Pantaleo G; Vella S; Federico M
    BMC Biotechnol; 2019 Oct; 19(1):67. PubMed ID: 31623599
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TOX promotes the exhaustion of antitumor CD8
    Wang X; He Q; Shen H; Xia A; Tian W; Yu W; Sun B
    J Hepatol; 2019 Oct; 71(4):731-741. PubMed ID: 31173813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Establishment of engineered cell-based assays mediating LAG3 and PD1 immune suppression enables potency measurement of blocking antibodies and assessment of signal transduction.
    Bhagwat B; Cherwinski H; Sathe M; Seghezzi W; McClanahan TK; de Waal Malefyt R; Willingham A
    J Immunol Methods; 2018 May; 456():7-14. PubMed ID: 29427592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer.
    Bassez A; Vos H; Van Dyck L; Floris G; Arijs I; Desmedt C; Boeckx B; Vanden Bempt M; Nevelsteen I; Lambein K; Punie K; Neven P; Garg AD; Wildiers H; Qian J; Smeets A; Lambrechts D
    Nat Med; 2021 May; 27(5):820-832. PubMed ID: 33958794
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression of the immune checkpoint receptors PD-1, LAG3, and TIM3 in the immune context of stage II and III gastric cancer by using single and chromogenic multiplex immunohistochemistry.
    Park Y; Seo AN; Koh J; Nam SK; Kwak Y; Ahn SH; Park DJ; Kim HH; Lee HS
    Oncoimmunology; 2021; 10(1):1954761. PubMed ID: 34367732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NASH limits anti-tumour surveillance in immunotherapy-treated HCC.
    Pfister D; Núñez NG; Pinyol R; Govaere O; Pinter M; Szydlowska M; Gupta R; Qiu M; Deczkowska A; Weiner A; Müller F; Sinha A; Friebel E; Engleitner T; Lenggenhager D; Moncsek A; Heide D; Stirm K; Kosla J; Kotsiliti E; Leone V; Dudek M; Yousuf S; Inverso D; Singh I; Teijeiro A; Castet F; Montironi C; Haber PK; Tiniakos D; Bedossa P; Cockell S; Younes R; Vacca M; Marra F; Schattenberg JM; Allison M; Bugianesi E; Ratziu V; Pressiani T; D'Alessio A; Personeni N; Rimassa L; Daly AK; Scheiner B; Pomej K; Kirstein MM; Vogel A; Peck-Radosavljevic M; Hucke F; Finkelmeier F; Waidmann O; Trojan J; Schulze K; Wege H; Koch S; Weinmann A; Bueter M; Rössler F; Siebenhüner A; De Dosso S; Mallm JP; Umansky V; Jugold M; Luedde T; Schietinger A; Schirmacher P; Emu B; Augustin HG; Billeter A; Müller-Stich B; Kikuchi H; Duda DG; Kütting F; Waldschmidt DT; Ebert MP; Rahbari N; Mei HE; Schulz AR; Ringelhan M; Malek N; Spahn S; Bitzer M; Ruiz de Galarreta M; Lujambio A; Dufour JF; Marron TU; Kaseb A; Kudo M; Huang YH; Djouder N; Wolter K; Zender L; Marche PN; Decaens T; Pinato DJ; Rad R; Mertens JC; Weber A; Unger K; Meissner F; Roth S; Jilkova ZM; Claassen M; Anstee QM; Amit I; Knolle P; Becher B; Llovet JM; Heikenwalder M
    Nature; 2021 Apr; 592(7854):450-456. PubMed ID: 33762733
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clonality of CD4
    Arakawa A; Vollmer S; Tietze J; Galinski A; Heppt MV; Bürdek M; Berking C; Prinz JC
    Front Immunol; 2019; 10():1336. PubMed ID: 31275310
    [TBL] [Abstract][Full Text] [Related]  

  • 36. T Cell Transcriptional Profiling and Immunophenotyping Uncover LAG3 as a Potential Significant Target of Immune Modulation in Multiple Myeloma.
    Lucas F; Pennell M; Huang Y; Benson DM; Efebera YA; Chaudhry M; Hughes T; Woyach JA; Byrd JC; Zhang S; Jones D; Guan X; Burd CE; Rosko AE
    Biol Blood Marrow Transplant; 2020 Jan; 26(1):7-15. PubMed ID: 31445183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Function and regulation of LAG3 on CD4
    Ma QY; Huang DY; Zhang HJ; Wang S; Chen XF
    Exp Cell Res; 2017 Nov; 360(2):358-364. PubMed ID: 28935468
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Analysis of gene expression levels and their impact on survival in 31 cancer-types patients identifies novel prognostic markers and suggests unexplored immunotherapy treatment options in a wide range of malignancies.
    Giampietri C; Scatozza F; Crecca E; Vigiano Benedetti V; Natali PG; Facchiano A
    J Transl Med; 2022 Oct; 20(1):467. PubMed ID: 36224560
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New emerging targets in cancer immunotherapy: the role of LAG3.
    Puhr HC; Ilhan-Mutlu A
    ESMO Open; 2019; 4(2):e000482. PubMed ID: 31231559
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of 4-1BB agonist and PD-1 antagonist promotes antitumor effector/memory CD8 T cells in a poorly immunogenic tumor model.
    Chen S; Lee LF; Fisher TS; Jessen B; Elliott M; Evering W; Logronio K; Tu GH; Tsaparikos K; Li X; Wang H; Ying C; Xiong M; VanArsdale T; Lin JC
    Cancer Immunol Res; 2015 Feb; 3(2):149-60. PubMed ID: 25387892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.