These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 35580021)

  • 1. What Factors Affect a User's Intention to Use Fitness Applications? The Moderating Effect of Health Status: A Cross-Sectional Study.
    Kim B; Lee E
    Inquiry; 2022; 59():469580221095826. PubMed ID: 35580021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Keep Using My Health Apps: Discover Users' Perception of Health and Fitness Apps with the UTAUT2 Model.
    Yuan S; Ma W; Kanthawala S; Peng W
    Telemed J E Health; 2015 Sep; 21(9):735-41. PubMed ID: 25919238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determinants of Fitness App Usage and Moderating Impacts of Education-, Motivation-, and Gamification-Related App Features on Physical Activity Intentions: Cross-sectional Survey Study.
    Yang Y; Koenigstorfer J
    J Med Internet Res; 2021 Jul; 23(7):e26063. PubMed ID: 34255656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors influencing the continuance intention of the women's health WeChat public account: an integrated model of UTAUT2 and HBM.
    Min H; Li J; Di M; Huang S; Sun X; Li T; Wu Y
    Front Public Health; 2024; 12():1348673. PubMed ID: 38966697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying an Extended UTAUT2 Model to Explain User Acceptance of Lifestyle and Therapy Mobile Health Apps: Survey Study.
    Schomakers EM; Lidynia C; Vervier LS; Calero Valdez A; Ziefle M
    JMIR Mhealth Uhealth; 2022 Jan; 10(1):e27095. PubMed ID: 35040801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors Affecting User's Behavioral Intention and Use of a Mobile-Phone-Delivered Cognitive Behavioral Therapy for Insomnia: A Small-Scale UTAUT Analysis.
    Fitrianie S; Horsch C; Beun RJ; Griffioen-Both F; Brinkman WP
    J Med Syst; 2021 Nov; 45(12):110. PubMed ID: 34767084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of extrinsic reward that affect a user's continuous intention to use a fitness application.
    Kim B; Lee E; Jo SH
    Inform Health Soc Care; 2023 Apr; 48(2):153-164. PubMed ID: 35699254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors Influencing Patients' Intentions to Use Diabetes Management Apps Based on an Extended Unified Theory of Acceptance and Use of Technology Model: Web-Based Survey.
    Zhang Y; Liu C; Luo S; Xie Y; Liu F; Li X; Zhou Z
    J Med Internet Res; 2019 Aug; 21(8):e15023. PubMed ID: 31411146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding and Predicting the Adoption of Fitness Mobile Apps: Evidence from China.
    Wei J; Vinnikova A; Lu L; Xu J
    Health Commun; 2021 Jul; 36(8):950-961. PubMed ID: 32041437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Influence of Incentive-Based Mobile Fitness Apps on Users' Continuance Intention With Gender Moderation Effects: Quantitative and Qualitative Study.
    Faizah A; Hardian AFA; Nandini RD; Handayani PW; Harahap NC
    JMIR Hum Factors; 2024 Jun; 11():e50957. PubMed ID: 38837199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Middle-aged and elderly users' continuous usage intention of health maintenance-oriented WeChat official accounts: empirical study based on a hybrid model in China.
    Xu L; Li P; Hou X; Yu H; Tang T; Liu T; Xiang S; Wu X; Huang C
    BMC Med Inform Decis Mak; 2021 Sep; 21(1):257. PubMed ID: 34479566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Empirical Investigation of Factors Influencing Consumer Intention to Use an Artificial Intelligence-Powered Mobile Application for Weight Loss and Health Management.
    Huang CY; Yang MC
    Telemed J E Health; 2020 Oct; 26(10):1240-1251. PubMed ID: 31971883
    [No Abstract]   [Full Text] [Related]  

  • 13. Application and extension of the UTAUT2 model for determining behavioral intention factors in use of the artificial intelligence virtual assistants.
    García de Blanes Sebastián M; Sarmiento Guede JR; Antonovica A
    Front Psychol; 2022; 13():993935. PubMed ID: 36329748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting adoption of the assistive technology open platform: extended unified theory of acceptance and use of technology.
    Kim AJ; An KO; Yang J; Rho ER; Shim J; Eun SD
    Disabil Rehabil Assist Technol; 2024 Oct; 19(7):2506-2518. PubMed ID: 38357965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing the Acceptance of Mobile Hypertension Apps for Disease Management Among Patients Versus Clinical Use Among Physicians: Cross-sectional Survey.
    Breil B; Salewski C; Apolinário-Hagen J
    JMIR Cardio; 2022 Jan; 6(1):e31617. PubMed ID: 34989683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating older adults users' willingness to adopt wearable devices by integrating the technology acceptance model (UTAUT2) and the Technology Readiness Index theory.
    Wu C; Lim GG
    Front Public Health; 2024; 12():1449594. PubMed ID: 39421816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of the Unified Theory of Acceptance and Use of Technology 2 model for predicting mHealth acceptance using diabetes as an example: a cross-sectional validation study.
    Schretzlmaier P; Hecker A; Ammenwerth E
    BMJ Health Care Inform; 2022 Nov; 29(1):. PubMed ID: 36379608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adoption of Mobile Health Apps in Dietetic Practice: Case Study of Diyetkolik.
    Akdur G; Aydin MN; Akdur G
    JMIR Mhealth Uhealth; 2020 Oct; 8(10):e16911. PubMed ID: 33006566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Users' intention to continue using social fitness-tracking apps: expectation confirmation theory and social comparison theory perspective.
    Li J; Liu X; Ma L; Zhang W
    Inform Health Soc Care; 2019 Sep; 44(3):298-312. PubMed ID: 29504821
    [No Abstract]   [Full Text] [Related]  

  • 20. Analysis of the factors influencing healthcare professionals' adoption of mobile electronic medical record (EMR) using the unified theory of acceptance and use of technology (UTAUT) in a tertiary hospital.
    Kim S; Lee KH; Hwang H; Yoo S
    BMC Med Inform Decis Mak; 2016 Jan; 16():12. PubMed ID: 26831123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.