BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 35580372)

  • 1. Synergistic interactions, kinetic and thermodynamic analysis of co-pyrolysis of municipal paper and polypropylene waste.
    Galiwango E; A Gabbar H
    Waste Manag; 2022 Jun; 146():86-93. PubMed ID: 35580372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis.
    Mishra RK; Mohanty K
    Bioresour Technol; 2018 Mar; 251():63-74. PubMed ID: 29272770
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into kinetic and thermodynamic analyses of co-pyrolysis of wheat straw and plastic waste via thermogravimetric analysis.
    Singh S; Tagade A; Verma A; Sharma A; Tekade SP; Sawarkar AN
    Bioresour Technol; 2022 Jul; 356():127332. PubMed ID: 35589042
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential.
    Mishra RK; Mohanty K
    Bioresour Technol; 2020 Sep; 311():123480. PubMed ID: 32413639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conversion of Polypropylene Waste into Value-Added Products: A Greener Approach.
    Nisar J; Aziz M; Shah A; Shah I; Iqbal M
    Molecules; 2022 May; 27(9):. PubMed ID: 35566367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study on the pyrolysis kinetics of polyurethane foam from waste refrigerators.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 Mar; 38(3):271-278. PubMed ID: 31599207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic studies on the pyrolysis of plastic waste using a combination of model-fitting and model-free methods.
    Yao Z; Yu S; Su W; Wu W; Tang J; Qi W
    Waste Manag Res; 2020 May; 38(1_suppl):77-85. PubMed ID: 31957598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of kinetic triplet, thermal degradation behaviour and thermodynamic properties for pyrolysis of a lignocellulosic biomass.
    Açıkalın K
    Bioresour Technol; 2021 Oct; 337():125438. PubMed ID: 34166929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics and kinetics study of simultaneous pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA.
    Azizi K; Keshavarz Moraveji M; Abedini Najafabadi H
    Bioresour Technol; 2017 Nov; 243():481-491. PubMed ID: 28689141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of thermal degradation of banana (Musa balbisiana) trunk biomass waste using iso-conversional models.
    Kumar M; Shukla SK; Upadhyay SN; Mishra PK
    Bioresour Technol; 2020 Aug; 310():123393. PubMed ID: 32334359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of mixed municipal solid waste: Characterisation, interaction effect and kinetic modelling using the thermogravimetric approach.
    Chhabra V; Bhattacharya S; Shastri Y
    Waste Manag; 2019 May; 90():152-167. PubMed ID: 30935785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-kinetic behaviour of green synthesized nanomaterial enhanced organic phase change material: Model fitting approach.
    Kalidasan B; Pandey AK; Aljafari B; Chinnasamy S; Kareri T; Rahman S
    J Environ Manage; 2023 Dec; 348():119439. PubMed ID: 37890400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights on kinetic triplets and thermodynamic analysis of Delonix regia biomass pyrolysis.
    Rammohan D; Kishore N; Uppaluri RVS
    Bioresour Technol; 2022 Aug; 358():127375. PubMed ID: 35623604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on thermochemical characteristics properties and pyrolysis kinetics of the mixtures of waste corn stalk and pyrolusite.
    Du J; Gao L; Yang Y; Chen G; Guo S; Omran M; Chen J; Ruan R
    Bioresour Technol; 2021 Mar; 324():124660. PubMed ID: 33434872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of pigeon pea (Cajanus cajan) stalk: Kinetics and thermodynamic analysis of degradation stages via isoconversional and master plot methods.
    Kirti N; Tekade SP; Tagade A; Sawarkar AN
    Bioresour Technol; 2022 Mar; 347():126440. PubMed ID: 34852283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network.
    Naqvi SR; Hameed Z; Tariq R; Taqvi SA; Ali I; Niazi MBK; Noor T; Hussain A; Iqbal N; Shahbaz M
    Waste Manag; 2019 Feb; 85():131-140. PubMed ID: 30803566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermo-catalytic decomposition of polystyrene waste: Comparative analysis using different kinetic models.
    Ali G; Nisar J; Iqbal M; Shah A; Abbas M; Shah MR; Rashid U; Bhatti IA; Khan RA; Shah F
    Waste Manag Res; 2020 Feb; 38(2):202-212. PubMed ID: 31405341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Behavior of Mixed Plastics at Different Heating Rates: I. Pyrolysis Kinetics.
    Dubdub I; Al-Yaari M
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy optimization from a binary mixture of non-edible oilseeds pyrolysis: Kinetic triplets analysis using Thermogravimetric Analyser and prediction modeling by Artificial Neural Network.
    Sahoo A; Gautam R; Kumar S; Mohanty K
    J Environ Manage; 2021 Nov; 297():113253. PubMed ID: 34284329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis.
    Singh S; Patil T; Tekade SP; Gawande MB; Sawarkar AN
    Sci Total Environ; 2021 Aug; 783():147004. PubMed ID: 34088159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.