BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 35580401)

  • 1. Effects of automatic emergency braking systems on pedestrian crash risk.
    Cicchino JB
    Accid Anal Prev; 2022 Jul; 172():106686. PubMed ID: 35580401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on crash risk of automatic emergency braking systems for pedestrians and bicyclists.
    Kullgren A; Amin K; Tingvall C
    Traffic Inj Prev; 2023; 24(sup1):S111-S115. PubMed ID: 37267014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimated benefit of automated emergency braking systems for vehicle-pedestrian crashes in the United States.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2019; 20(sup1):S171-S176. PubMed ID: 31381447
    [No Abstract]   [Full Text] [Related]  

  • 4. Effectiveness of forward collision warning and autonomous emergency braking systems in reducing front-to-rear crash rates.
    Cicchino JB
    Accid Anal Prev; 2017 Feb; 99(Pt A):142-152. PubMed ID: 27898367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of forward collision warning and automatic emergency braking on rear-end crashes involving pickup trucks.
    Cicchino JB
    Traffic Inj Prev; 2023; 24(4):293-298. PubMed ID: 36853168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effectiveness of front crash prevention systems in reducing large truck real-world crash rates.
    Teoh ER
    Traffic Inj Prev; 2021; 22(4):284-289. PubMed ID: 33769151
    [No Abstract]   [Full Text] [Related]  

  • 7. Improving the safety relevance of automatic emergency braking testing programs: An examination of common characteristics of police-reported rear-end crashes in the United States.
    Kidd DG
    Traffic Inj Prev; 2022; 23(sup1):S137-S142. PubMed ID: 35767826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of rear-end crashes involving passenger vehicles with automatic emergency braking.
    Cicchino JB; Zuby DS
    Traffic Inj Prev; 2019; 20(sup1):S112-S118. PubMed ID: 31381436
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential benefit of sensor system field-of-view and range in pedestrian automated emergency braking systems.
    Haus SH; Sherony R; Gabler HC
    Traffic Inj Prev; 2021; 22(sup1):S111-S115. PubMed ID: 34469208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forward collision warning system impact.
    Hubele N; Kennedy K
    Traffic Inj Prev; 2018; 19(sup2):S78-S83. PubMed ID: 30001148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimate of potential benefit for Europe of fitting Autonomous Emergency Braking (AEB) systems for pedestrian protection to passenger cars.
    Edwards M; Nathanson A; Wisch M
    Traffic Inj Prev; 2014; 15 Suppl 1():S173-82. PubMed ID: 25307384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Integrated Pedestrian Protection Systems with Autonomous Emergency Braking (AEB) and Passive Safety Components.
    Edwards M; Nathanson A; Carroll J; Wisch M; Zander O; Lubbe N
    Traffic Inj Prev; 2015; 16 Suppl 1():S2-S11. PubMed ID: 26027971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real life safety benefits of increasing brake deceleration in car-to-pedestrian accidents: Simulation of Vacuum Emergency Braking.
    Jeppsson H; Östling M; Lubbe N
    Accid Anal Prev; 2018 Feb; 111():311-320. PubMed ID: 29257980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of automatic emergency braking responses in passenger vehicles evaluated in the IIHS front crash prevention program.
    Kidd DG; Perez-Rapela D; Jermakian JS
    Accid Anal Prev; 2023 Sep; 190():107150. PubMed ID: 37301163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An examination of the increases in pedestrian motor-vehicle crash fatalities during 2009-2016.
    Hu W; Cicchino JB
    J Safety Res; 2018 Dec; 67():37-44. PubMed ID: 30553428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field effectiveness of general motors advanced driver assistance and headlighting systems.
    Leslie AJ; Kiefer RJ; Meitzner MR; Flannagan CA
    Accid Anal Prev; 2021 Sep; 159():106275. PubMed ID: 34242861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Issues and challenges for pedestrian active safety systems based on real world accidents.
    Hamdane H; Serre T; Masson C; Anderson R
    Accid Anal Prev; 2015 Sep; 82():53-60. PubMed ID: 26047007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pedestrian crash causation analysis and active safety system calibration.
    Ye C; Wang X; Morris A; Ying Z
    Accid Anal Prev; 2024 Feb; 195():107404. PubMed ID: 38042009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating risk factors associated with pedestrian crash occurrence and injury severity in Texas.
    Rahman M; Kockelman KM; Perrine KA
    Traffic Inj Prev; 2022; 23(5):283-289. PubMed ID: 35584352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How effective are pedestrian crash prevention systems in improving pedestrian safety? Harnessing large-scale experimental data.
    Mahdinia I; Khattak AJ; Mohsena Haque A
    Accid Anal Prev; 2022 Jun; 171():106669. PubMed ID: 35427907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.