These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 35580516)
1. An ultrasensitive CH Li J; Wang Q; Xiong C; Deng Q; Zhang X; Wang S; Chen MM Food Chem; 2022 Oct; 390():133200. PubMed ID: 35580516 [TBL] [Abstract][Full Text] [Related]
2. High-performance electrochemiluminescence sensors based on ultra-stable perovskite quantum dots@ZIF-8 composites for aflatoxin B1 monitoring in corn samples. Wang Q; Xiong C; Li J; Deng Q; Zhang X; Wang S; Chen MM Food Chem; 2023 Jun; 410():135325. PubMed ID: 36610091 [TBL] [Abstract][Full Text] [Related]
3. Development of a ZnCdS@ZnS quantum dots-based label-free electrochemiluminescence immunosensor for sensitive determination of aflatoxin B Sun C; Liao X; Jia B; Shi L; Zhang D; Wang R; Zhou L; Kong W Mikrochim Acta; 2020 Mar; 187(4):236. PubMed ID: 32189083 [TBL] [Abstract][Full Text] [Related]
4. Electrochemiluminescent competitive immunosensor based on polyethyleneimine capped SiO Wang Y; Zhao G; Li X; Liu L; Cao W; Wei Q Biosens Bioelectron; 2018 Mar; 101():290-296. PubMed ID: 29096368 [TBL] [Abstract][Full Text] [Related]
5. A semiconductor quantum dot-based ratiometric electrochemical aptasensor for the selective and reliable determination of aflatoxin B1. Wang C; Qian J; An K; Lu X; Huang X Analyst; 2019 Aug; 144(16):4772-4780. PubMed ID: 31268094 [TBL] [Abstract][Full Text] [Related]
6. Enhanced electrochemiluminescence of RuSi nanoparticles for ultrasensitive detection of ochratoxin A by energy transfer with CdTe quantum dots. Wang Q; Chen M; Zhang H; Wen W; Zhang X; Wang S Biosens Bioelectron; 2016 May; 79():561-7. PubMed ID: 26749097 [TBL] [Abstract][Full Text] [Related]
7. DNA tetrahedral scaffold-corbelled 3D DNAzyme walker for electrochemiluminescent aflatoxin B Li Z; Xu H; Zhang Z; Miao X Food Chem; 2023 May; 407():135049. PubMed ID: 36493494 [TBL] [Abstract][Full Text] [Related]
8. Self-enhanced electrochemiluminescence of luminol induced by palladium-graphene oxide for ultrasensitive detection of aflatoxin B Xia M; Yang X; Jiao T; Oyama M; Chen Q; Chen X Food Chem; 2022 Jul; 381():132276. PubMed ID: 35121311 [TBL] [Abstract][Full Text] [Related]
9. Dual-signal-amplified electrochemiluminescence biosensor for microRNA detection by coupling cyclic enzyme with CdTe QDs aggregate as luminophor. Zhu HY; Ding SN Biosens Bioelectron; 2019 Jun; 134():109-116. PubMed ID: 30965162 [TBL] [Abstract][Full Text] [Related]
10. Surface-enhanced molecularly imprinted electrochemiluminescence sensor based on Ru@SiO Zhang W; Xiong H; Chen M; Zhang X; Wang S Biosens Bioelectron; 2017 Oct; 96():55-61. PubMed ID: 28460332 [TBL] [Abstract][Full Text] [Related]
11. An efficient aggregation-induced electrochemiluminescent immunosensor by using TiO Lv X; Hu Q; Miao T; Li Y; Cui B; Fang Y Anal Bioanal Chem; 2022 Jul; 414(17):4837-4847. PubMed ID: 35513458 [TBL] [Abstract][Full Text] [Related]
12. An electrochemiluminescence biosensor based on Graphitic carbon nitride luminescence quenching for detection of AFB Tian D; Wang J; Zhuang Q; Wu S; Yu Y; Ding K Food Chem; 2023 Mar; 404(Pt A):134183. PubMed ID: 36240563 [TBL] [Abstract][Full Text] [Related]
13. Regulation of Ru(bpy) Li Y; Liu D; Meng S; Zhang J; Li L; You T Anal Chem; 2022 Jan; 94(2):1294-1301. PubMed ID: 34965091 [TBL] [Abstract][Full Text] [Related]
14. Facile electrochemiluminescence sensing platform based on water-soluble tungsten oxide quantum dots for ultrasensitive detection of dopamine released by cells. Peng H; Liu P; Wu W; Chen W; Meng X; Lin X; Liu A Anal Chim Acta; 2019 Aug; 1065():21-28. PubMed ID: 31005147 [TBL] [Abstract][Full Text] [Related]
15. Colorimetric and ECL dual-mode aptasensor for smartphone-based onsite sensitive detection of aflatoxin B1 in combination with ZnO@MWCNTs/g-C Xu H; Li C; Mao R; Wang X; Fan Y; Lu H; Liu J; Zhou H Biosens Bioelectron; 2024 Oct; 262():116569. PubMed ID: 39018978 [TBL] [Abstract][Full Text] [Related]
16. Label-free Hg(II) electrochemiluminescence sensor based on silica nanoparticles doped with a self-enhanced Ru(bpy) Li L; Zhao W; Zhang J; Luo L; Liu X; Li X; You T; Zhao C J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1151-1161. PubMed ID: 34735851 [TBL] [Abstract][Full Text] [Related]
17. A novel signal amplified electrochemiluminescence biosensor based on MIL-53(Al)@CdS QDs and SiO Feng D; Wei F; Wu Y; Tan X; Li F; Lu Y; Fan G; Han H Analyst; 2021 Feb; 146(4):1295-1302. PubMed ID: 33350406 [TBL] [Abstract][Full Text] [Related]
18. [Separation and enrichment of trace aflatoxin B Li X; Lu Y; Dong Y; Jiang F; Fan Z; Pan H; Liu M; Chen Y Se Pu; 2022 Aug; 40(8):694-703. PubMed ID: 35903836 [TBL] [Abstract][Full Text] [Related]
19. An antifouling electrochemiluminescence sensor based on mesoporous CuO Tang Y; Hu X; Liu Y; Chen Y; Zhao F; Zeng B Biosens Bioelectron; 2022 Oct; 214():114492. PubMed ID: 35779409 [TBL] [Abstract][Full Text] [Related]
20. An ultrasensitive ratiometric aptasensor based on the dual-potential electrochemiluminescence of Ru(bpy) Lv L; Chen Q; Jing C; Wang X Food Chem; 2023 Jul; 415():135780. PubMed ID: 36863239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]