These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 35580542)

  • 1. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.
    Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D
    Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of the cavitation noise and vibration induced by the choked flow in a Venturi reactor.
    Xu S; Wang J; Cheng H; Ji B; Long X
    Ultrason Sonochem; 2020 Oct; 67():105183. PubMed ID: 32474184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolved air effects on three-phase hydrodynamic cavitation in large scale Venturi- Experimental/numerical analysis.
    Hasani Malekshah E; Wróblewski W; Majkut M
    Ultrason Sonochem; 2022 Nov; 90():106199. PubMed ID: 36244095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number.
    Soyama H
    Ultrason Sonochem; 2021 Mar; 71():105389. PubMed ID: 33221624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of cyanide containing wastewater using cavitation based approach.
    Jawale RH; Gogate PR; Pandit AB
    Ultrason Sonochem; 2014 Jul; 21(4):1392-9. PubMed ID: 24529614
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation on the cavitation characteristic of a novel cylindrical rotational hydrodynamic cavitation reactor.
    Xue L; Hao Z; Ren W; Wang Y; Liu G; Liu J; Wang H; Bie H
    Ultrason Sonochem; 2024 Jul; 109():106999. PubMed ID: 39033717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical simulation of cavitation-vortex interaction mechanism in an advanced rotational hydrodynamic cavitation reactor.
    Xia G; You W; Manickam S; Yoon JY; Xuan X; Sun X
    Ultrason Sonochem; 2024 May; 105():106849. PubMed ID: 38513544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of cavitation noise using Eulerian-Lagrangian multiscale modeling.
    Li L; Niu Y; Wei G; Manickam S; Sun X; Zhu Z
    Ultrason Sonochem; 2023 Jul; 97():106446. PubMed ID: 37224639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation.
    Kelkar MA; Gogate PR; Pandit AB
    Ultrason Sonochem; 2008 Mar; 15(3):188-94. PubMed ID: 17544315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jan; 34():183-194. PubMed ID: 27773234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel method for optimization of slit Venturi dimensions through CFD simulation and RSM design.
    Abbasi E; Saadat S; Karimi Jashni A; Shafaei MH
    Ultrason Sonochem; 2020 Oct; 67():105088. PubMed ID: 32279032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Decolourization of Rhodamine B: A swirling jet-induced cavitation combined with NaOCl.
    Mancuso G; Langone M; Laezza M; Andreottola G
    Ultrason Sonochem; 2016 Sep; 32():18-30. PubMed ID: 27150741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the origins of vortex cavitation in a Venturi tube by high speed X-ray imaging.
    Soyama H; Liang X; Yashiro W; Kajiwara K; Asimakopoulou EM; Bellucci V; Birnsteinova S; Giovanetti G; Kim C; Kirkwood HJ; Koliyadu JCP; Letrun R; Zhang Y; Uličný J; Bean R; Mancuso AP; Villanueva-Perez P; Sato T; Vagovič P; Eakins D; Korsunsky AM
    Ultrason Sonochem; 2023 Dec; 101():106715. PubMed ID: 38061251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of diclofenac sodium using combined processes based on hydrodynamic cavitation and heterogeneous photocatalysis.
    Bagal MV; Gogate PR
    Ultrason Sonochem; 2014 May; 21(3):1035-43. PubMed ID: 24262760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical modeling and experimental validation of hydrodynamic cavitation reactor with a Venturi tube for sugarcane bagasse pretreatment.
    Bimestre TA; Júnior JAM; Botura CA; Canettieri E; Tuna CE
    Bioresour Technol; 2020 Sep; 311():123540. PubMed ID: 32446231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel strategies to enhance hydrodynamic cavitation in a circular venturi using RANS numerical simulations.
    Dutta N; Kopparthi P; Mukherjee AK; Nirmalkar N; Boczkaj G
    Water Res; 2021 Oct; 204():117559. PubMed ID: 34496315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Research on Noise-Induced Characteristics of Unsteady Cavitation of a Jet Pump.
    Gan J; Zhang K; Wang D
    ACS Omega; 2022 Apr; 7(14):12255-12267. PubMed ID: 35449934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluid dynamics of acoustic and hydrodynamic cavitation in hydraulic power systems.
    Ferrari A
    Proc Math Phys Eng Sci; 2017 Mar; 473(2199):20160345. PubMed ID: 28413332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On efficient modelling of radical production in cavitation assisted reactors.
    Ozan SC; Muller PJ; Cloete JH
    Ultrason Sonochem; 2024 Mar; 104():106833. PubMed ID: 38452712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis.
    Peng K; Qin FGF; Jiang R; Kang S
    Ultrason Sonochem; 2020 Dec; 69():105253. PubMed ID: 32731127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.