These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 35581067)

  • 1. Chondroitin sulfate cross-linked three-dimensional tailored electrospun scaffolds for cartilage regeneration.
    Chen Y; Xu W; Shafiq M; Song D; Xie X; Yuan Z; El-Newehy M; El-Hamshary H; Morsi Y; Liu Y; Mo X
    Biomater Adv; 2022 Mar; 134():112643. PubMed ID: 35581067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional porous gas-foamed electrospun nanofiber scaffold for cartilage regeneration.
    Chen Y; Xu W; Shafiq M; Tang J; Hao J; Xie X; Yuan Z; Xiao X; Liu Y; Mo X
    J Colloid Interface Sci; 2021 Dec; 603():94-109. PubMed ID: 34197994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.
    Zhou F; Zhang X; Cai D; Li J; Mu Q; Zhang W; Zhu S; Jiang Y; Shen W; Zhang S; Ouyang HW
    Acta Biomater; 2017 Nov; 63():64-75. PubMed ID: 28890259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone).
    Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH
    Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional silk fibroin-gelatin/chondroitin sulfate/hyaluronic acid-aloe vera scaffold supports in vitro chondrogenesis of bone marrow mesenchymal stem cells and reduces inflammatory effect.
    Wuttisiriboon K; Tippayawat P; Daduang J; Limpaiboon T
    J Biomed Mater Res B Appl Biomater; 2023 Aug; 111(8):1557-1570. PubMed ID: 36988305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrospun silk fibroin/poly(lactide-co-ε-caprolactone) nanofibrous scaffolds for bone regeneration.
    Wang Z; Lin M; Xie Q; Sun H; Huang Y; Zhang D; Yu Z; Bi X; Chen J; Wang J; Shi W; Gu P; Fan X
    Int J Nanomedicine; 2016; 11():1483-500. PubMed ID: 27114708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration.
    Chen Y; Jia Z; Shafiq M; Xie X; Xiao X; Castro R; Rodrigues J; Wu J; Zhou G; Mo X
    Colloids Surf B Biointerfaces; 2021 May; 201():111637. PubMed ID: 33639507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration.
    Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL
    Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chondroitin sulfate modified 3D porous electrospun nanofiber scaffolds promote cartilage regeneration.
    Chen S; Chen W; Chen Y; Mo X; Fan C
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111312. PubMed ID: 33254957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biofabrication of poly(l-lactide-co-ε-caprolactone)/silk fibroin scaffold for the application as superb anti-calcification tissue engineered prosthetic valve.
    Wang X; Liu J; Jing H; Li B; Sun Z; Li B; Kong D; Leng X; Wang Z
    Mater Sci Eng C Mater Biol Appl; 2021 Feb; 121():111872. PubMed ID: 33579497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.
    Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L
    Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration.
    Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG
    J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering.
    Jung Y; Kim SH; Kim YH; Kim SH
    J Biomater Sci Polym Ed; 2010; 21(5):581-92. PubMed ID: 20338093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superabsorbent 3D Scaffold Based on Electrospun Nanofibers for Cartilage Tissue Engineering.
    Chen W; Chen S; Morsi Y; El-Hamshary H; El-Newhy M; Fan C; Mo X
    ACS Appl Mater Interfaces; 2016 Sep; 8(37):24415-25. PubMed ID: 27559926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Injectable Ultrasonication-Induced Silk Fibroin Hydrogel for Cartilage Repair and Regeneration.
    Yuan T; Li Z; Zhang Y; Shen K; Zhang X; Xie R; Liu F; Fan W
    Tissue Eng Part A; 2021 Sep; 27(17-18):1213-1224. PubMed ID: 33353462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wet-electrospun PHBV nanofiber reinforced carboxymethyl chitosan-silk hydrogel composite scaffolds for articular cartilage repair.
    Gunes OC; Albayrak AZ; Tasdemir S; Sendemir A
    J Biomater Appl; 2020; 35(4-5):515-531. PubMed ID: 32600090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of a simple off-the-shelf bi-layered vascular scaffold based on poly(L-lactide-co-ε-caprolactone)/silk fibroin in vitro and in vivo.
    Jin D; Hu J; Xia D; Liu A; Kuang H; Du J; Mo X; Yin M
    Int J Nanomedicine; 2019; 14():4261-4276. PubMed ID: 31289441
    [No Abstract]   [Full Text] [Related]  

  • 19. Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering.
    Chang KY; Cheng LW; Ho GH; Huang YP; Lee YD
    Acta Biomater; 2009 Jul; 5(6):1937-47. PubMed ID: 19282262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of C-type natriuretic peptide gene-modified bone marrow mesenchymal stem cells with chitosan/silk fibroin scaffolds as a promising strategy for articular cartilage regeneration.
    Yang S; Qian Z; Liu D; Wen N; Xu J; Guo X
    Cell Tissue Bank; 2019 Jun; 20(2):209-220. PubMed ID: 30854603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.