BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 35581097)

  • 21. Composite Hydrogels With Controlled Degradation in 3D Printed Scaffolds.
    Jiang Z; Shaha R; Jiang K; McBride R; Frick C; Oakey J
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):261-264. PubMed ID: 30892230
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-laden injectable microgels: Current status and future prospects for cartilage regeneration.
    Nguyen TPT; Li F; Shrestha S; Tuan RS; Thissen H; Forsythe JS; Frith JE
    Biomaterials; 2021 Dec; 279():121214. PubMed ID: 34736147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interplay of Hydrogel Composition and Geometry on Human Mesenchymal Stem Cell Osteogenesis.
    Shrestha S; Li F; Truong VX; Forsythe JS; Frith JE
    Biomacromolecules; 2020 Dec; 21(12):5323-5335. PubMed ID: 33237736
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration.
    An C; Liu W; Zhang Y; Pang B; Liu H; Zhang Y; Zhang H; Zhang L; Liao H; Ren C; Wang H
    Acta Biomater; 2020 Jul; 111():181-196. PubMed ID: 32450230
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells.
    Liu HY; Greene T; Lin TY; Dawes CS; Korc M; Lin CC
    Acta Biomater; 2017 Jan; 48():258-269. PubMed ID: 27769941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of cell-laden macroporous biodegradable hydrogels with tunable porosities and pore sizes.
    Wang L; Lu S; Lam J; Kasper FK; Mikos AG
    Tissue Eng Part C Methods; 2015 Mar; 21(3):263-73. PubMed ID: 25156274
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiphasic microgel-in-gel materials to recapitulate cellular mesoenvironments in vitro.
    Husman D; Welzel PB; Vogler S; Bray LJ; Träber N; Friedrichs J; Körber V; Tsurkan MV; Freudenberg U; Thiele J; Werner C
    Biomater Sci; 2019 Dec; 8(1):101-108. PubMed ID: 31674601
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel microgel-based scaffolds to study the effect of degradability on human dermal fibroblasts.
    Zhou W; Stukel J; AlNiemi A; Willits RK
    Biomed Mater; 2018 Jul; 13(5):055007. PubMed ID: 29869613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
    Frassica MT; Jones SK; Diaz-Rodriguez P; Hahn MS; Grunlan MA
    Acta Biomater; 2019 Nov; 99():100-109. PubMed ID: 31536841
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Annealing High Aspect Ratio Microgels into Macroporous 3D Scaffolds Allows for Higher Porosities and Effective Cell Migration.
    Suturin AC; Krüger AJD; Neidig K; Klos N; Dolfen N; Bund M; Gronemann T; Sebers R; Manukanc A; Yazdani G; Kittel Y; Rommel D; Haraszti T; Köhler J; De Laporte L
    Adv Healthc Mater; 2022 Dec; 11(24):e2200989. PubMed ID: 36100464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A microfluidic-based cell encapsulation platform to achieve high long-term cell viability in photopolymerized PEGNB hydrogel microspheres.
    Jiang Z; Xia B; McBride R; Oakey J
    J Mater Chem B; 2017 Jan; 5(1):173-180. PubMed ID: 28066550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of antibody-loaded microgels using microfluidics and thiol-ene photoclick chemistry.
    Gregoritza M; Abstiens K; Graf M; Goepferich AM
    Eur J Pharm Biopharm; 2018 Jun; 127():194-203. PubMed ID: 29471077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface-directed assembly of cell-laden microgels.
    Du Y; Ghodousi M; Lo E; Vidula MK; Emiroglu O; Khademhosseini A
    Biotechnol Bioeng; 2010 Feb; 105(3):655-62. PubMed ID: 19777588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aspiration-assisted freeform bioprinting of mesenchymal stem cell spheroids within alginate microgels.
    Kim MH; Banerjee D; Celik N; Ozbolat IT
    Biofabrication; 2022 Feb; 14(2):. PubMed ID: 35062000
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fragmenting Bulk Hydrogels and Processing into Granular Hydrogels for Biomedical Applications.
    Muir VG; Prendergast ME; Burdick JA
    J Vis Exp; 2022 May; (183):. PubMed ID: 35662235
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications.
    Lin CC; Frahm E; Afolabi FO
    Macromol Biosci; 2024 Feb; 24(2):e2300371. PubMed ID: 37748778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fast-Curing Injectable Microporous Hydrogel for
    Edwards SD; Hou S; Brown JM; Boudreau RD; Lee Y; Kim YJ; Jeong KJ
    ACS Appl Bio Mater; 2022 Jun; 5(6):2786-2794. PubMed ID: 35576622
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modularly assembled porous cell-laden hydrogels.
    Liu B; Liu Y; Lewis AK; Shen W
    Biomaterials; 2010 Jun; 31(18):4918-25. PubMed ID: 20338634
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ formation of osteochondral interfaces through "bone-ink" printing in tailored microgel suspensions.
    Jalandhra GK; Molley TG; Hung TT; Roohani I; Kilian KA
    Acta Biomater; 2023 Jan; 156():75-87. PubMed ID: 36055612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering.
    Hwang CM; Sant S; Masaeli M; Kachouie NN; Zamanian B; Lee SH; Khademhosseini A
    Biofabrication; 2010 Sep; 2(3):035003. PubMed ID: 20823504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.