These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35581195)

  • 1. High resolution multispectral spatial light modulators based on tunable Fabry-Perot nanocavities.
    Mansha S; Moitra P; Xu X; Mass TWW; Veetil RM; Liang X; Li SQ; Paniagua-Domínguez R; Kuznetsov AI
    Light Sci Appl; 2022 May; 11(1):141. PubMed ID: 35581195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of high-speed phase-only spatial light modulators with two-dimensional tunable microcavity arrays.
    Peng C; Hamerly R; Soltani M; Englund DR
    Opt Express; 2019 Oct; 27(21):30669-30680. PubMed ID: 31684311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface.
    Li SQ; Xu X; Maruthiyodan Veetil R; Valuckas V; Paniagua-Domínguez R; Kuznetsov AI
    Science; 2019 Jun; 364(6445):1087-1090. PubMed ID: 31197013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Control of Nanocavities with Tunable Metal Oxides.
    Kim J; Carnemolla EG; DeVault C; Shaltout AM; Faccio D; Shalaev VM; Kildishev AV; Ferrera M; Boltasseva A
    Nano Lett; 2018 Feb; 18(2):740-746. PubMed ID: 29283583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How to use a phase-only spatial light modulator as a color display.
    Harm W; Jesacher A; Thalhammer G; Bernet S; Ritsch-Marte M
    Opt Lett; 2015 Feb; 40(4):581-4. PubMed ID: 25680155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-speed programmable lithium niobate thin film spatial light modulator.
    Ye X; Ni F; Li H; Liu H; Zheng Y; Chen X
    Opt Lett; 2021 Mar; 46(5):1037-1040. PubMed ID: 33649651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Colour hologram projection with an SLM by exploiting its full phase modulation range.
    Jesacher A; Bernet S; Ritsch-Marte M
    Opt Express; 2014 Aug; 22(17):20530-41. PubMed ID: 25321258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-electromechanical spatial light modulator enabled by asymmetric resonant dielectric metasurfaces.
    Kwon H; Zheng T; Faraon A
    Nat Commun; 2022 Oct; 13(1):5811. PubMed ID: 36192401
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-based compensation of pixel crosstalk in liquid crystal spatial light modulators.
    Moser S; Ritsch-Marte M; Thalhammer G
    Opt Express; 2019 Sep; 27(18):25046-25063. PubMed ID: 31510384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electro-optic polymer and silicon nitride hybrid spatial light modulators based on a metasurface.
    Sun X; Yu H; Deng N; Ban D; Liu G; Qiu F
    Opt Express; 2021 Aug; 29(16):25543-25551. PubMed ID: 34614884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diffractive optical elements designed for highly precise far-field generation in the presence of artifacts typical for pixelated spatial light modulators.
    Milewski G; Engström D; Bengtsson J
    Appl Opt; 2007 Jan; 46(1):95-105. PubMed ID: 17167560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level.
    Zeng Z; Li Z; Fang F; Zhang X
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing light through scattering media by polarization modulation based generalized digital optical phase conjugation.
    Yang J; Shen Y; Liu Y; Hemphill AS; Wang LV
    Appl Phys Lett; 2017 Nov; 111(20):201108. PubMed ID: 29203931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable Wavefront Control in the Visible Spectrum Using Low-Loss Chalcogenide Phase-Change Metasurfaces.
    Moitra P; Wang Y; Liang X; Lu L; Poh A; Mass TWW; Simpson RE; Kuznetsov AI; Paniagua-Dominguez R
    Adv Mater; 2023 Aug; 35(34):e2205367. PubMed ID: 36341483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infrared metasurface absorber based on silicon-based CMOS process.
    Zhang Y; Wu Z; Xia J; Wu J; Yang K; Dong C; Tong G; Zhang H; Yang R; Luo Y
    Opt Express; 2022 Aug; 30(18):32937-32947. PubMed ID: 36242345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical retarder system with programmable spectral retardance.
    Moreno I; Carrión JV; Martínez JL; García-Martínez P; Sánchez-López MM; Campos J
    Opt Lett; 2014 Oct; 39(19):5483-6. PubMed ID: 25360908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Optical Phase Profile in Beam Deflector with Advanced Simulation Method for High Diffraction Efficiency.
    Manko A; Kim Y; Morozov A; Palto S; Won K; Lee HS
    Micromachines (Basel); 2022 May; 13(5):. PubMed ID: 35630271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals.
    Sun M; Xu X; Sun XW; Liang X; Valuckas V; Zheng Y; Paniagua-Domínguez R; Kuznetsov AI
    Sci Rep; 2019 Jun; 9(1):8673. PubMed ID: 31209242
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metasurface-empowered spectral and spatial light modulation for disruptive holographic displays.
    Kim G; Kim S; Kim H; Lee J; Badloe T; Rho J
    Nanoscale; 2022 Mar; 14(12):4380-4410. PubMed ID: 35266481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correction of Fabry-Pérot interference effects in phase and amplitude pulse shapers based on liquid crystal spatial light modulators.
    Wittenbecher L; Zigmantas D
    Opt Express; 2019 Aug; 27(16):22970-22982. PubMed ID: 31510581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.