These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 35581245)
1. Temporal phytoremediation potential for heavy metals and bacterial abundance in drainage water. El-Liethy MA; Dakhil MA; El-Keblawy A; Abdelaal M; Halmy MWA; Elgarhy AH; Kamika I; El-Sherbeny GA; Mwaheb MA Sci Rep; 2022 May; 12(1):8223. PubMed ID: 35581245 [TBL] [Abstract][Full Text] [Related]
2. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Galal TM; Eid EM; Dakhil MA; Hassan LM Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352 [TBL] [Abstract][Full Text] [Related]
3. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Galal TM; Farahat EA Environ Monit Assess; 2015 Nov; 187(11):701. PubMed ID: 26497561 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using Chan MY; Tee CS; Chai TT; Sim YL; Beh WL Int J Phytoremediation; 2022; 24(13):1376-1384. PubMed ID: 35191343 [TBL] [Abstract][Full Text] [Related]
5. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Kumar V; Singh J; Kumar P Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462 [TBL] [Abstract][Full Text] [Related]
6. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Kumar V; Singh J; Chopra AK Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378 [TBL] [Abstract][Full Text] [Related]
7. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X Environ Sci Pollut Res Int; 2011 Jul; 18(6):978-86. PubMed ID: 21287283 [TBL] [Abstract][Full Text] [Related]
8. Tolerance mechanism and phytoremediation potential of Li Y; Xin J; Ge W; Tian R Int J Phytoremediation; 2022; 24(12):1259-1266. PubMed ID: 35037542 [No Abstract] [Full Text] [Related]
9. Experiments and modeling to develop a Pistia stratiotes based Floating Vegetated System (FVS) for the removal of heavy metals (Pb, Zn, Cr, Cu, Ni). Samal K; Dash RR Sci Total Environ; 2024 May; 926():171981. PubMed ID: 38547997 [TBL] [Abstract][Full Text] [Related]
10. Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage. Schwantes D; Gonçalves AC; Schiller ADP; Manfrin J; Campagnolo MA; Somavilla E Int J Phytoremediation; 2019; 21(7):714-723. PubMed ID: 30656947 [TBL] [Abstract][Full Text] [Related]
11. In situ phytoremediation characterization of heavy metals promoted by Hydrocotyle ranunculoides at Santa Bárbara stream, an anthropogenic polluted site in southern of Brazil. Demarco CF; Afonso TF; Pieniz S; Quadro MS; Camargo FAO; Andreazza R Environ Sci Pollut Res Int; 2018 Oct; 25(28):28312-28321. PubMed ID: 30083896 [TBL] [Abstract][Full Text] [Related]
12. Modeling of the bioaccumulative efficiency of Ergönül MB; Nassouhi D; Atasağun S Int J Phytoremediation; 2020; 22(2):201-209. PubMed ID: 31475565 [TBL] [Abstract][Full Text] [Related]
13. Removal of Cu, Zn, Pb, and Cr from Yangtze Estuary Using the Huang X; Zhao F; Yu G; Song C; Geng Z; Zhuang P Biomed Res Int; 2017; 2017():6201048. PubMed ID: 28717650 [TBL] [Abstract][Full Text] [Related]
14. An experimental and prediction modeling study on water lettuce (Pistia stratiotes L.) assisted heavy metals removal from glass industry effluent. Singh J; Alhag SK; Al-Shahari EA; Al-Shuraym LA; Alsudays IM; Ahmed MT; Eid EM; Fayssal SA; Kumar P; Malyan SK; Singh O; Kumar V Environ Sci Pollut Res Int; 2024 Apr; 31(19):28090-28104. PubMed ID: 38530520 [TBL] [Abstract][Full Text] [Related]
15. Organic acid enhanced soil risk element (Cd, Pb and Zn) leaching and secondary bioconcentration in water lettuce (Pistia stratiotes L.) in the rhizofiltration process. Veseý T; Tlustos P; Száková J Int J Phytoremediation; 2012 Apr; 14(4):335-49. PubMed ID: 22567715 [TBL] [Abstract][Full Text] [Related]
16. Spatial and seasonal characteristics of dissolved heavy metals in the surface seawater of the Yellow River Estuary, China. Wang X; Zhao L; Xu H; Zhang X Mar Pollut Bull; 2018 Dec; 137():465-473. PubMed ID: 30503457 [TBL] [Abstract][Full Text] [Related]
17. Correlations between some hazardous inorganic pollutants in the Gomti River and their accumulation in selected macrophytes under aquatic ecosystem. Shah AB; Rai UN; Singh RP Bull Environ Contam Toxicol; 2015 Jun; 94(6):783-90. PubMed ID: 25894347 [TBL] [Abstract][Full Text] [Related]
18. Physico-chemical assessment of paper mill effluent and its heavy metal remediation using aquatic macrophytes--a case study at JK Paper mill, Rayagada, India. Mishra S; Mohanty M; Pradhan C; Patra HK; Das R; Sahoo S Environ Monit Assess; 2013 May; 185(5):4347-59. PubMed ID: 22993029 [TBL] [Abstract][Full Text] [Related]
19. Aquatic macrophytes mediated remediation of toxic metals from moderately contaminated industrial effluent. Saraswat S; Rai DJPN Int J Phytoremediation; 2018 Jul; 20(9):876-884. PubMed ID: 29873544 [TBL] [Abstract][Full Text] [Related]
20. Changes in growth rate and macroelement and trace element accumulation in Hydrocharis morsus-ranae L. during the growing season in relation to environmental contamination. Polechońska L; Samecka-Cymerman A; Dambiec M Environ Sci Pollut Res Int; 2017 Feb; 24(6):5439-5451. PubMed ID: 28028700 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]