BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 35581265)

  • 61. Highly Fluorinated Methacrylates for Optical 3D Printing of Microfluidic Devices.
    Kotz F; Risch P; Helmer D; Rapp BE
    Micromachines (Basel); 2018 Mar; 9(3):. PubMed ID: 30424049
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Design and characterization of a 3D-printed staggered herringbone mixer.
    Shenoy VJ; Edwards CE; Helgeson ME; Valentine MT
    Biotechniques; 2021 May; 70(5):285-289. PubMed ID: 34000813
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Understanding and improving FDM 3D printing to fabricate high-resolution and optically transparent microfluidic devices.
    Quero RF; Domingos da Silveira G; Fracassi da Silva JA; Jesus DP
    Lab Chip; 2021 Sep; 21(19):3715-3729. PubMed ID: 34355724
    [TBL] [Abstract][Full Text] [Related]  

  • 64. 3D printed high density, reversible, chip-to-chip microfluidic interconnects.
    Gong H; Woolley AT; Nordin GP
    Lab Chip; 2018 Feb; 18(4):639-647. PubMed ID: 29355276
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Impact of PEGDA photopolymerization in micro-stereolithography on 3D printed hydrogel structure and swelling.
    Alketbi AS; Shi Y; Li H; Raza A; Zhang T
    Soft Matter; 2021 Aug; 17(30):7188-7195. PubMed ID: 34269366
    [TBL] [Abstract][Full Text] [Related]  

  • 67. 3D-Printed microfluidic device for protein purification in batch chromatography.
    Habib T; Brämer C; Heuer C; Ebbecke J; Beutel S; Bahnemann J
    Lab Chip; 2022 Mar; 22(5):986-993. PubMed ID: 35107475
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 3D printed self-supporting elastomeric structures for multifunctional microfluidics.
    Su R; Wen J; Su Q; Wiederoder MS; Koester SJ; Uzarski JR; McAlpine MC
    Sci Adv; 2020 Oct; 6(41):. PubMed ID: 33036980
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 3D Printed Multimaterial Microfluidic Valve.
    Keating SJ; Gariboldi MI; Patrick WG; Sharma S; Kong DS; Oxman N
    PLoS One; 2016; 11(8):e0160624. PubMed ID: 27525809
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol.
    Katseli V; Economou A; Kokkinos C
    Talanta; 2020 Feb; 208():120388. PubMed ID: 31816700
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Three-Dimensional Printing of Multifunctional Nanocomposites: Manufacturing Techniques and Applications.
    Farahani RD; Dubé M; Therriault D
    Adv Mater; 2016 Jul; 28(28):5794-821. PubMed ID: 27135923
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Accessing microfluidics through feature-based design software for 3D printing.
    Shankles PG; Millet LJ; Aufrecht JA; Retterer ST
    PLoS One; 2018; 13(3):e0192752. PubMed ID: 29596418
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline.
    Moetazedian A; Candeo A; Liu S; Hughes A; Nasrollahi V; Saadat M; Bassi A; Grover LM; Cox LR; Poologasundarampillai G
    Adv Healthc Mater; 2023 Oct; 12(26):e2300636. PubMed ID: 37186512
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry.
    Duarte LC; Pereira I; Maciel LIL; Vaz BG; Coltro WKT
    Anal Chim Acta; 2022 Jan; 1190():339252. PubMed ID: 34857139
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors.
    Liedert C; Rannaste L; Kokkonen A; Huttunen OH; Liedert R; Hiltunen J; Hakalahti L
    ACS Sens; 2020 Jul; 5(7):2010-2017. PubMed ID: 32469200
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Design, microfabrication, and characterization of a moulded PDMS/SU-8 inkjet dispenser for a Lab-on-a-Printer platform technology with disposable microfluidic chip.
    Bsoul A; Pan S; Cretu E; Stoeber B; Walus K
    Lab Chip; 2016 Aug; 16(17):3351-61. PubMed ID: 27444216
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biomimetic and mechanically supportive 3D printed scaffolds for cartilage and osteochondral tissue engineering using photopolymers and digital light processing.
    Schoonraad SA; Fischenich KM; Eckstein KN; Crespo-Cuevas V; Savard LM; Muralidharan A; Tomaschke AA; Uzcategui AC; Randolph MA; McLeod RR; Ferguson VL; Bryant SJ
    Biofabrication; 2021 Sep; 13(4):. PubMed ID: 34479218
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Integration of a microfluidic system into a conventional luminescence detector using a 3D printed alignment device.
    Écija-Arenas Á; Román-Pizarro V; Fernández-Romero JM
    Mikrochim Acta; 2020 Oct; 187(11):620. PubMed ID: 33084998
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics.
    Sanchez Noriega JL; Chartrand NA; Valdoz JC; Cribbs CG; Jacobs DA; Poulson D; Viglione MS; Woolley AT; Van Ry PM; Christensen KA; Nordin GP
    Nat Commun; 2021 Sep; 12(1):5509. PubMed ID: 34535656
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.