BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 35581265)

  • 81. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach.
    Tiboni M; Tiboni M; Pierro A; Del Papa M; Sparaventi S; Cespi M; Casettari L
    Int J Pharm; 2021 Apr; 599():120464. PubMed ID: 33713759
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Research highlights: printing the future of microfabrication.
    Tseng P; Murray C; Kim D; Di Carlo D
    Lab Chip; 2014 May; 14(9):1491-5. PubMed ID: 24671475
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Functional 3D printing: Approaches and bioapplications.
    Palmara G; Frascella F; Roppolo I; Chiappone A; Chiadò A
    Biosens Bioelectron; 2021 Mar; 175():112849. PubMed ID: 33250333
    [TBL] [Abstract][Full Text] [Related]  

  • 84. 3D Printed Integrated Multi-Layer Microfluidic Chips for Ultra-High Volumetric Throughput Nanoliposome Preparation.
    Shan H; Lin Q; Wang D; Sun X; Quan B; Chen X; Chen Z
    Front Bioeng Biotechnol; 2021; 9():773705. PubMed ID: 34708031
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Structural colour enhanced microfluidics.
    Qin D; Gibbons AH; Ito MM; Parimalam SS; Jiang H; Enis Karahan H; Ghalei B; Yamaguchi D; Pandian GN; Sivaniah E
    Nat Commun; 2022 May; 13(1):2281. PubMed ID: 35589687
    [TBL] [Abstract][Full Text] [Related]  

  • 86. An integrated microfluidic 3D tumor system for parallel and high-throughput chemotherapy evaluation.
    Liu W; Liu D; Hu R; Huang Z; Sun M; Han K
    Analyst; 2020 Oct; 145(20):6447-6455. PubMed ID: 33043931
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Microfluidic technologies for vasculature biomimicry.
    Hu C; Chen Y; Tan MJA; Ren K; Wu H
    Analyst; 2019 Jul; 144(15):4461-4471. PubMed ID: 31162494
    [TBL] [Abstract][Full Text] [Related]  

  • 89. 3D Printing of Monolithic Capillarity-Driven Microfluidic Devices for Diagnostics.
    Achille C; Parra-Cabrera C; Dochy R; Ordutowski H; Piovesan A; Piron P; Van Looy L; Kushwaha S; Reynaerts D; Verboven P; Nicolaï B; Lammertyn J; Spasic D; Ameloot R
    Adv Mater; 2021 Jun; 33(25):e2008712. PubMed ID: 33969565
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Investigating the impact of metal ions and 3D printed droplet microfluidics chip geometry on the luminol‑potassium periodate chemiluminescence system for estimating total phenolic content in olive oil.
    Al Mughairy B; Al-Lawati HAJ; Suliman FO
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Oct; 221():117182. PubMed ID: 31170602
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Development of a Custom-Made 3D Printing Protocol with Commercial Resins for Manufacturing Microfluidic Devices.
    Subirada F; Paoli R; Sierra-Agudelo J; Lagunas A; Rodriguez-Trujillo R; Samitier J
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890735
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Stereolithography 3D printing technology in pharmaceuticals: a review.
    Deshmane S; Kendre P; Mahajan H; Jain S
    Drug Dev Ind Pharm; 2021 Sep; 47(9):1362-1372. PubMed ID: 34663145
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Versatile and Low-Cost Fabrication of Modular Lock-and-Key Microfluidics for Integrated Connector Mixer Using a Stereolithography 3D Printing.
    Anshori I; Lukito V; Adhawiyah R; Putri D; Harimurti S; Rajab TLE; Pradana A; Akbar M; Syamsunarno MRAA; Handayani M; Purwidyantri A; Prabowo BA
    Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 36014119
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Multimaterial bioprinting and combination of processing techniques towards the fabrication of biomimetic tissues and organs.
    Tavafoghi M; Darabi MA; Mahmoodi M; Tutar R; Xu C; Mirjafari A; Billi F; Swieszkowski W; Nasrollahi F; Ahadian S; Hosseini V; Khademhosseini A; Ashammakhi N
    Biofabrication; 2021 Aug; 13(4):. PubMed ID: 34130266
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Fused Deposition Modeling 3D Printing for (Bio)analytical Device Fabrication: Procedures, Materials, and Applications.
    Salentijn GI; Oomen PE; Grajewski M; Verpoorte E
    Anal Chem; 2017 Jul; 89(13):7053-7061. PubMed ID: 28628294
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Facile fabrication of micro-/nanostructured, superhydrophobic membranes with adjustable porosity by 3D printing.
    Mayoussi F; Doeven EH; Kick A; Goralczyk A; Thomann Y; Risch P; Guijt RM; Kotz F; Helmer D; Rapp BE
    J Mater Chem A Mater; 2021 Sep; 9(37):21379-21386. PubMed ID: 34603732
    [TBL] [Abstract][Full Text] [Related]  

  • 97. FDM 3D Printing of High-Pressure, Heat-Resistant, Transparent Microfluidic Devices.
    Romanov V; Samuel R; Chaharlang M; Jafek AR; Frost A; Gale BK
    Anal Chem; 2018 Sep; 90(17):10450-10456. PubMed ID: 30071717
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors Using Sacrificial Metal 3D Printing.
    Kamat AM; Pei Y; Jayawardhana B; Kottapalli AGP
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1094-1104. PubMed ID: 33395251
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Microfluidic bioprinting for organ-on-a-chip models.
    Yu F; Choudhury D
    Drug Discov Today; 2019 Jun; 24(6):1248-1257. PubMed ID: 30940562
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Engineering a dynamic three-dimensional cell culturing microenvironment using a 'sandwich' structure-liked microfluidic device with 3D printing scaffold.
    Ding L; Liu C; Yin S; Zhou Z; Chen J; Chen X; Chen L; Wang D; Liu B; Liu Y; Wei J; Li J
    Biofabrication; 2022 Sep; 14(4):. PubMed ID: 35973411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.