BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35581345)

  • 1. Histone H1 binding to nucleosome arrays depends on linker DNA length and trajectory.
    Dombrowski M; Engeholm M; Dienemann C; Dodonova S; Cramer P
    Nat Struct Mol Biol; 2022 May; 29(5):493-501. PubMed ID: 35581345
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure.
    Routh A; Sandin S; Rhodes D
    Proc Natl Acad Sci U S A; 2008 Jul; 105(26):8872-7. PubMed ID: 18583476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin structure-dependent conformations of the H1 CTD.
    Fang H; Wei S; Lee TH; Hayes JJ
    Nucleic Acids Res; 2016 Nov; 44(19):9131-9141. PubMed ID: 27365050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling studies of chromatin fiber structure as a function of DNA linker length.
    Perišić O; Collepardo-Guevara R; Schlick T
    J Mol Biol; 2010 Nov; 403(5):777-802. PubMed ID: 20709077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms.
    Louro JA; Boopathi R; Beinsteiner B; Mohideen Patel AK; Cheng TC; Angelov D; Hamiche A; Bendar J; Kale S; Klaholz BP; Dimitrov S
    Structure; 2023 Feb; 31(2):201-212.e5. PubMed ID: 36610392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. H1.0 C Terminal Domain Is Integral for Altering Transcription Factor Binding within Nucleosomes.
    Burge NL; Thuma JL; Hong ZZ; Jamison KB; Ottesen JJ; Poirier MG
    Biochemistry; 2022 Apr; 61(8):625-638. PubMed ID: 35377618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis of RNA polymerase II transcription on the chromatosome containing linker histone H1.
    Hirano R; Ehara H; Kujirai T; Uejima T; Takizawa Y; Sekine SI; Kurumizaka H
    Nat Commun; 2022 Nov; 13(1):7287. PubMed ID: 36435862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short nucleosome repeats impose rotational modulations on chromatin fibre folding.
    Correll SJ; Schubert MH; Grigoryev SA
    EMBO J; 2012 May; 31(10):2416-26. PubMed ID: 22473209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule force spectroscopy on histone H4 tail-cross-linked chromatin reveals fiber folding.
    Kaczmarczyk A; Allahverdi A; Brouwer TB; Nordenskiöld L; Dekker NH; van Noort J
    J Biol Chem; 2017 Oct; 292(42):17506-17513. PubMed ID: 28855255
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of salt on the binding of the linker histone H1 to DNA and nucleosomes.
    Al-Natour Z; Hassan AH
    DNA Cell Biol; 2007 Jun; 26(6):445-52. PubMed ID: 17570768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin.
    Mishra LN; Hayes JJ
    J Biol Chem; 2018 Dec; 293(50):19191-19200. PubMed ID: 30373774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromatin structures condensed by linker histones.
    Zhou BR; Bai Y
    Essays Biochem; 2019 Apr; 63(1):75-87. PubMed ID: 31015384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Linker histone H1 and H3K56 acetylation are antagonistic regulators of nucleosome dynamics.
    Bernier M; Luo Y; Nwokelo KC; Goodwin M; Dreher SJ; Zhang P; Parthun MR; Fondufe-Mittendorf Y; Ottesen JJ; Poirier MG
    Nat Commun; 2015 Dec; 6():10152. PubMed ID: 26648124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length.
    Woodcock CL; Skoultchi AI; Fan Y
    Chromosome Res; 2006; 14(1):17-25. PubMed ID: 16506093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.