BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 35581345)

  • 21. Yeast HMO1: Linker Histone Reinvented.
    Panday A; Grove A
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 27903656
    [TBL] [Abstract][Full Text] [Related]  

  • 22. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic placement of the linker histone H1 associated with nucleosome arrangement and gene transcription in early Drosophila embryonic development.
    Hu J; Gu L; Ye Y; Zheng M; Xu Z; Lin J; Du Y; Tian M; Luo L; Wang B; Zhang X; Weng Z; Jiang C
    Cell Death Dis; 2018 Jul; 9(7):765. PubMed ID: 29988149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation of different nucleosome spacing periodicities in vitro. Possible origin of cell type specificity.
    Stein A; Mitchell M
    J Mol Biol; 1988 Oct; 203(4):1029-43. PubMed ID: 2463368
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The interplay between H2A.Z and H3K9 methylation in regulating HP1α binding to linker histone-containing chromatin.
    Ryan DP; Tremethick DJ
    Nucleic Acids Res; 2018 Oct; 46(18):9353-9366. PubMed ID: 30007360
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correlation among DNA Linker Length, Linker Histone Concentration, and Histone Tails in Chromatin.
    Luque A; Ozer G; Schlick T
    Biophys J; 2016 Jun; 110(11):2309-2319. PubMed ID: 27276249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Linker histones are fine-scale chromatin architects modulating developmental decisions in Arabidopsis.
    Rutowicz K; Lirski M; Mermaz B; Teano G; Schubert J; Mestiri I; Kroteń MA; Fabrice TN; Fritz S; Grob S; Ringli C; Cherkezyan L; Barneche F; Jerzmanowski A; Baroux C
    Genome Biol; 2019 Aug; 20(1):157. PubMed ID: 31391082
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome reorganisation in breast cancer tissues.
    Jacob DR; Guiblet WM; Mamayusupova H; Shtumpf M; Ciuta I; Ruje L; Gretton S; Bikova M; Correa C; Dellow E; Agrawal SP; Shafiei N; Drobysevskaja A; Armstrong CM; Lam JDG; Vainshtein Y; Clarkson CT; Thorn GJ; Sohn K; Pradeepa MM; Chandrasekharan S; Brooke GN; Klenova E; Zhurkin VB; Teif VB
    Clin Epigenetics; 2024 Apr; 16(1):50. PubMed ID: 38561804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Histone H4 tail mediates allosteric regulation of nucleosome remodelling by linker DNA.
    Hwang WL; Deindl S; Harada BT; Zhuang X
    Nature; 2014 Aug; 512(7513):213-7. PubMed ID: 25043036
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of the nucleosome repeat length in vivo by the DNA sequence, protein concentrations and long-range interactions.
    Beshnova DA; Cherstvy AG; Vainshtein Y; Teif VB
    PLoS Comput Biol; 2014 Jul; 10(7):e1003698. PubMed ID: 24992723
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Germline-specific H1 variants: the "sexy" linker histones.
    Pérez-Montero S; Carbonell A; Azorín F
    Chromosoma; 2016 Mar; 125(1):1-13. PubMed ID: 25921218
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mouse Dnmt3a preferentially methylates linker DNA and is inhibited by histone H1.
    Takeshima H; Suetake I; Tajima S
    J Mol Biol; 2008 Nov; 383(4):810-21. PubMed ID: 18823905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linker histone subtypes differ in their effect on nucleosomal spacing in vivo.
    Öberg C; Izzo A; Schneider R; Wrange Ö; Belikov S
    J Mol Biol; 2012 Jun; 419(3-4):183-97. PubMed ID: 22446683
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms.
    Collepardo-Guevara R; Schlick T
    Biophys J; 2011 Oct; 101(7):1670-80. PubMed ID: 21961593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High mobility group protein 14 and 17 can prevent the close packing of nucleosomes by increasing the strength of protein contacts in the linker DNA.
    Tremethick DJ; Hyman L
    J Biol Chem; 1996 May; 271(20):12009-16. PubMed ID: 8662614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array.
    Hizume K; Nakai T; Araki S; Prieto E; Yoshikawa K; Takeyasu K
    Ultramicroscopy; 2009 Jul; 109(8):868-73. PubMed ID: 19328628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Linker histone defines structure and self-association behaviour of the 177 bp human chromatosome.
    Wang S; Vogirala VK; Soman A; Berezhnoy NV; Liu ZB; Wong ASW; Korolev N; Su CJ; Sandin S; Nordenskiöld L
    Sci Rep; 2021 Jan; 11(1):380. PubMed ID: 33432055
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of an H1-Bound 6-Nucleosome Array Reveals an Untwisted Two-Start Chromatin Fiber Conformation.
    Garcia-Saez I; Menoni H; Boopathi R; Shukla MS; Soueidan L; Noirclerc-Savoye M; Le Roy A; Skoufias DA; Bednar J; Hamiche A; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2018 Dec; 72(5):902-915.e7. PubMed ID: 30392928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling linker histone interactions in nucleosomes.
    Hao F; Kale S; Dimitrov S; Hayes JJ
    Curr Opin Struct Biol; 2021 Dec; 71():87-93. PubMed ID: 34246862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.