These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 35581358)

  • 1. Chemical property prediction under experimental biases.
    Liu Y; Kashima H
    Sci Rep; 2022 May; 12(1):8206. PubMed ID: 35581358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thirteen Questions About Using Machine Learning in Causal Research (You Won't Believe the Answer to Number 10!).
    Mooney SJ; Keil AP; Westreich DJ
    Am J Epidemiol; 2021 Aug; 190(8):1476-1482. PubMed ID: 33751024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling Algorithmic Bias.
    Ghai B; Mueller K
    IEEE Trans Vis Comput Graph; 2023 Jan; 29(1):473-482. PubMed ID: 36155458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual graph convolutional neural network for predicting chemical networks.
    Harada S; Akita H; Tsubaki M; Baba Y; Takigawa I; Yamanishi Y; Kashima H
    BMC Bioinformatics; 2020 Apr; 21(Suppl 3):94. PubMed ID: 32321421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Not from Scratch: Predicting Thermophysical Properties through Model-Based Transfer Learning Using Graph Convolutional Networks.
    Hormazabal RS; Kang JW; Park K; Yang DR
    J Chem Inf Model; 2022 Nov; 62(22):5411-5424. PubMed ID: 36315416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Building Chemical Property Models for Energetic Materials from Small Datasets Using a Transfer Learning Approach.
    Lansford JL; Barnes BC; Rice BM; Jensen KF
    J Chem Inf Model; 2022 Nov; 62(22):5397-5410. PubMed ID: 36240441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the effect of chemicals on fruit using graph neural networks.
    Han J; Li T; He Y; Yang Z
    Sci Rep; 2024 Apr; 14(1):8203. PubMed ID: 38589529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graph Convolutional Neural Networks as "General-Purpose" Property Predictors: The Universality and Limits of Applicability.
    Korolev V; Mitrofanov A; Korotcov A; Tkachenko V
    J Chem Inf Model; 2020 Jan; 60(1):22-28. PubMed ID: 31860296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Costless Performance Improvement in Machine Learning for Graph-Based Molecular Analysis.
    Na GS; Kim HW; Chang H
    J Chem Inf Model; 2020 Mar; 60(3):1137-1145. PubMed ID: 31928003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An algorithm for direct causal learning of influences on patient outcomes.
    Rathnam C; Lee S; Jiang X
    Artif Intell Med; 2017 Jan; 75():1-15. PubMed ID: 28363452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference.
    Blakely T; Lynch J; Simons K; Bentley R; Rose S
    Int J Epidemiol; 2021 Jan; 49(6):2058-2064. PubMed ID: 31298274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
    Schuler MS; Rose S
    Am J Epidemiol; 2017 Jan; 185(1):65-73. PubMed ID: 27941068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex machine learning model needs complex testing: Examining predictability of molecular binding affinity by a graph neural network.
    Nikolaienko T; Gurbych O; Druchok M
    J Comput Chem; 2022 Apr; 43(10):728-739. PubMed ID: 35201629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Minimizing bias in massive multi-arm observational studies with BCAUS: balancing covariates automatically using supervision.
    Belthangady C; Stedden W; Norgeot B
    BMC Med Res Methodol; 2021 Sep; 21(1):190. PubMed ID: 34544367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A big data approach with artificial neural network and molecular similarity for chemical data mining and endocrine disruption prediction.
    Paulose R; Jegatheesan K; Balakrishnan GS
    Indian J Pharmacol; 2018; 50(4):169-176. PubMed ID: 30505052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.
    Senanayake S; White N; Graves N; Healy H; Baboolal K; Kularatna S
    Int J Med Inform; 2019 Oct; 130():103957. PubMed ID: 31472443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfer learning using attentions across atomic systems with graph neural networks (TAAG).
    Kolluru A; Shoghi N; Shuaibi M; Goyal S; Das A; Zitnick CL; Ulissi Z
    J Chem Phys; 2022 May; 156(18):184702. PubMed ID: 35568535
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anthropogenic biases in chemical reaction data hinder exploratory inorganic synthesis.
    Jia X; Lynch A; Huang Y; Danielson M; Lang'at I; Milder A; Ruby AE; Wang H; Friedler SA; Norquist AJ; Schrier J
    Nature; 2019 Sep; 573(7773):251-255. PubMed ID: 31511682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrating Nearest Neighbors with Neural Network Models for Treatment Effect Estimation.
    Kiriakidou N; Diou C
    Int J Neural Syst; 2023 Jul; 33(7):2350036. PubMed ID: 37335255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A universal graph deep learning interatomic potential for the periodic table.
    Chen C; Ong SP
    Nat Comput Sci; 2022 Nov; 2(11):718-728. PubMed ID: 38177366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.