BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 35582733)

  • 1. The stability investigation of variable viscosity control in the human-robot interaction.
    Dong L; Perrin N; Richer F; Roby-Brami A; Morel G
    Int J Med Robot; 2022 Oct; 18(5):e2416. PubMed ID: 35582733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Human-Robot Collaboration Method for Parallel Robots Oriented to Segment Docking.
    Sun D; Wang J; Xu Z; Bao J; Lu H
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Mutual Understanding for Human-Robot Collaboration: Combining Human-Aware Motion Planning with Haptic Feedback Devices for Communicating Planned Trajectory.
    Grushko S; Vysocký A; Oščádal P; Vocetka M; Novák P; Bobovský Z
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34070528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving gesture-based interaction between an assistive bathing robot and older adults via user training on the gestural commands.
    Werner C; Kardaris N; Koutras P; Zlatintsi A; Maragos P; Bauer JM; Hauer K
    Arch Gerontol Geriatr; 2020; 87():103996. PubMed ID: 31855713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multimodal Emotional Human-Robot Interaction Architecture for Social Robots Engaged in Bidirectional Communication.
    Hong A; Lunscher N; Hu T; Tsuboi Y; Zhang X; Franco Dos Reis Alves S; Nejat G; Benhabib B
    IEEE Trans Cybern; 2021 Dec; 51(12):5954-5968. PubMed ID: 32149676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Persuasive robots should avoid authority: The effects of formal and real authority on persuasion in human-robot interaction.
    Saunderson SP; Nejat G
    Sci Robot; 2021 Sep; 6(58):eabd5186. PubMed ID: 34550717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.
    Modares H; Ranatunga I; Lewis FL; Popa DO
    IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning.
    Wan Z; Jiang C; Fahad M; Ni Z; Guo Y; He H
    IEEE Trans Cybern; 2020 Apr; 50(4):1669-1682. PubMed ID: 30475740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expectations vs. actual behavior of a social robot: An experimental investigation of the effects of a social robot's interaction skill level and its expected future role on people's evaluations.
    Horstmann AC; Krämer NC
    PLoS One; 2020; 15(8):e0238133. PubMed ID: 32822438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system.
    Mizanoor Rahman SM; Ikeura R
    Robotics Biomim; 2018; 5(1):7. PubMed ID: 30524934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. User Experience Design for Social Robots: A Case Study in Integrating Embodiment.
    Corrales-Paredes A; Sanz DO; Terrón-López MJ; Egido-García V
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Cognition in Interaction With Robots: Taking the Robot's Perspective Into Account.
    Salm-Hoogstraeten SV; Müsseler J
    Hum Factors; 2021 Dec; 63(8):1396-1407. PubMed ID: 32648797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Techniques for Increasing Efficiency of the Robot's Sensor and Control Information Processing.
    Kondratenko Y; Atamanyuk I; Sidenko I; Kondratenko G; Sichevskyi S
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic Motion Learning Framework to Promote Social Engagement.
    Burns R; Jeon M; Park CH
    Appl Sci (Basel); 2018 Feb; 8(2):. PubMed ID: 35582004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Augmented Robotics Dialog System for Enhancing Human-Robot Interaction.
    Alonso-Martín F; Castro-González A; Luengo FJ; Salichs MÁ
    Sensors (Basel); 2015 Jul; 15(7):15799-829. PubMed ID: 26151202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Bio-Inspired Endogenous Attention-Based Architecture for a Social Robot.
    Marques-Villarroya S; Castillo JC; Gamboa-Montero JJ; Sevilla-Salcedo J; Salichs MA
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human-robot interaction: the impact of robotic aesthetics on anticipated human trust.
    Pinney J; Carroll F; Newbury P
    PeerJ Comput Sci; 2022; 8():e837. PubMed ID: 35111922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel application of velocity-based force control for use in robotic biomechanical testing.
    Goertzen DJ; Kawchuk GN
    J Biomech; 2009 Feb; 42(3):366-9. PubMed ID: 19124128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motion synthesis and force distribution analysis for a biped robot.
    Trojnacki MT; Zielińska T
    Acta Bioeng Biomech; 2011; 13(2):45-56. PubMed ID: 21761810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.