These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35582737)

  • 1. Skeletal repatterning enhances the protective capacity of the shell in African hinge-back tortoises (Kinixys).
    Cordero GA; Vamberger M; Fritz U; Ihlow F
    Anat Rec (Hoboken); 2023 Jun; 306(6):1558-1573. PubMed ID: 35582737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delayed trait development and the convergent evolution of shell kinesis in turtles.
    Cordero GA; Quinteros K; Janzen FJ
    Proc Biol Sci; 2018 Oct; 285(1888):. PubMed ID: 30282655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The postembryonic transformation of the shell in emydine box turtles.
    Cordero GA; Stearns S; Quinteros K; Berns CM; Binz SM; Janzen F
    Evol Dev; 2019 Nov; 21(6):297-310. PubMed ID: 31441599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PREVALENCE AND PARASITE INTENSITY OF HAEMOGREGARINES IN AFRICAN BELL HINGE-BACK (KINIXYS BELLIANA) AND AFRICAN HOME'S HINGE-BACK (KINIXYS HOMEANA) TORTOISES IN IBADAN, NIGERIA.
    Adetunji VE; Ogundipe GAT; Adeyemo OK
    J Wildl Dis; 2022 Oct; 58(4):825-835. PubMed ID: 36321922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of pleurodiran and cryptodiran turtle embryos depicts the molecular ground pattern of the turtle carapacial ridge.
    Pascual-Anaya J; Hirasawa T; Sato I; Kuraku S; Kuratani S
    Int J Dev Biol; 2014; 58(10-12):743-50. PubMed ID: 26154315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolutionary developmental perspective for the origin of turtles: the folding theory for the shell based on the developmental nature of the carapacial ridge.
    Kuratani S; Kuraku S; Nagashima H
    Evol Dev; 2011; 13(1):1-14. PubMed ID: 21210938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emerging from the rib: resolving the turtle controversies.
    Rice R; Riccio P; Gilbert SF; Cebra-Thomas J
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):208-20. PubMed ID: 25675951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-righting potential and the evolution of shell shape in Galápagos tortoises.
    Chiari Y; van der Meijden A; Caccone A; Claude J; Gilles B
    Sci Rep; 2017 Nov; 7(1):15828. PubMed ID: 29192279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The endoskeletal origin of the turtle carapace.
    Hirasawa T; Nagashima H; Kuratani S
    Nat Commun; 2013; 4():2107. PubMed ID: 23836118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphological and mechanical changes in juvenile red-eared slider turtle (Trachemys scripta elegans) shells during ontogeny.
    Fish JF; Stayton CT
    J Morphol; 2014 Apr; 275(4):391-7. PubMed ID: 24301373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Body plan of turtles: an anatomical, developmental and evolutionary perspective.
    Nagashima H; Kuraku S; Uchida K; Kawashima-Ohya Y; Narita Y; Kuratani S
    Anat Sci Int; 2012 Mar; 87(1):1-13. PubMed ID: 22131042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The integumental appendages of the turtle shell: an evo-devo perspective.
    Moustakas-Verho JE; Cherepanov GO
    J Exp Zool B Mol Dev Evol; 2015 May; 324(3):221-9. PubMed ID: 25877335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance Surface Analysis Identifies Consistent Functional Patterns across 10 Morphologically Divergent Terrestrial Turtle Lineages.
    Stayton CT
    Integr Comp Biol; 2019 Aug; 59(2):346-357. PubMed ID: 31187125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The origin and loss of periodic patterning in the turtle shell.
    Moustakas-Verho JE; Zimm R; Cebra-Thomas J; Lempiäinen NK; Kallonen A; Mitchell KL; Hämäläinen K; Salazar-Ciudad I; Jernvall J; Gilbert SF
    Development; 2014 Aug; 141(15):3033-9. PubMed ID: 25053434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turtle Shell Kinesis Underscores Constraints and Opportunities in the Evolution of the Vertebrate Musculoskeletal System.
    Cordero GA
    Integr Org Biol; 2023; 5(1):obad033. PubMed ID: 37840690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global Analysis of Transcriptome and Translatome Revealed That Coordinated WNT and FGF Regulate the Carapacial Ridge Development of Chinese Soft-Shell Turtle.
    Zhang J; Yu P; Zhao Y; Zhou Q; Yang J; Hu Q; Liu T; Bao C; Su S; Gui JF
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palaeontology: turtles in transition.
    Lee MS
    Curr Biol; 2013 Jun; 23(12):R513-5. PubMed ID: 23787042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of multiple functional demands on morphological diversification: A test on turtle shells.
    Stayton CT; O'Connor LF; Nisivoccia NM
    Evolution; 2018 Sep; 72(9):1933-1949. PubMed ID: 30039566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep time perspective on turtle neck evolution: chasing the Hox code by vertebral morphology.
    Böhmer C; Werneburg I
    Sci Rep; 2017 Aug; 7(1):8939. PubMed ID: 28827543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphogenetic and constructional differences of the carapace of aquatic and terrestrial turtles and their evolutionary significance.
    Cherepanov G
    J Morphol; 2019 Oct; 280(10):1571-1581. PubMed ID: 31411770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.