BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 35582852)

  • 1. Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs.
    Kerr A; Sagita E; Mansfield EDH; Nguyen TH; Feeney OM; Pouton CW; Porter CJH; Sanchis J; Perrier S
    Biomacromolecules; 2022 Jun; 23(6):2315-2328. PubMed ID: 35582852
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclic peptide-poly(HPMA) nanotubes as drug delivery vectors: In vitro assessment, pharmacokinetics and biodistribution.
    Larnaudie SC; Sanchis J; Nguyen TH; Peltier R; Catrouillet S; Brendel JC; Porter CJH; Jolliffe KA; Perrier S
    Biomaterials; 2018 Sep; 178():570-582. PubMed ID: 29680158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Four-peptide-nanotube bundle formation by self-assembling of cyclic tetra-β-peptide using G-quartet motif.
    Ishihara Y; Kimura S
    Biopolymers; 2013 Apr; 100(2):141-7. PubMed ID: 23616097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative Study of the Cellular Uptake and Intracellular Behavior of a Library of Cyclic Peptide-Polymer Nanotubes with Different Self-Assembling Properties.
    Ellacott SH; Sanchez-Cano C; Mansfield EDH; Rho JY; Song JI; Peltier R; Perrier S
    Biomacromolecules; 2021 Feb; 22(2):710-722. PubMed ID: 33350825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison.
    Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical reinforcement of polymeric fibers through peptide nanotube incorporation.
    Rubin DJ; Nia HT; Desire T; Nguyen PQ; Gevelber M; Ortiz C; Joshi NS
    Biomacromolecules; 2013 Oct; 14(10):3370-5. PubMed ID: 24070499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-soluble and pH-responsive polymeric nanotubes from cyclic peptide templates.
    Chapman R; Warr GG; Perrier S; Jolliffe KA
    Chemistry; 2013 Feb; 19(6):1955-61. PubMed ID: 23297172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel polypseudorotaxane composed of cyclic beta-peptide as bead component.
    Hirata T; Fujimura F; Kimura S
    Chem Commun (Camb); 2007 Mar; (10):1023-5. PubMed ID: 17325793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New alpha,gamma-cyclic peptides-nanotube molecular caps using alpha,alpha-dialkylated alpha-amino acids.
    Reiriz C; Castedo L; Granja JR
    J Pept Sci; 2008 Feb; 14(2):241-9. PubMed ID: 18098331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes.
    Brea RJ; Reiriz C; Granja JR
    Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes.
    Amorín M; Castedo L; Granja JR
    J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-assembly of cyclic peptide nanotubes and block copolymers in thin films: controlling the kinetic pathway.
    Zhang C; Xu T
    Nanoscale; 2015 Oct; 7(37):15117-21. PubMed ID: 26355605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles.
    Sun L; Fan Z; Wang Y; Huang Y; Schmidt M; Zhang M
    Soft Matter; 2015 May; 11(19):3822-32. PubMed ID: 25858105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembled Peptide Nanotube Films with High Proton Conductivity.
    Silberbush O; Engel M; Sivron I; Roy S; Ashkenasy N
    J Phys Chem B; 2019 Nov; 123(46):9882-9888. PubMed ID: 31682119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary Self-Assembly of Supramolecular Nanotubes into Tubisomes and Their Activity on Cells.
    Brendel JC; Sanchis J; Catrouillet S; Czuba E; Chen MZ; Long BM; Nowell C; Johnston A; Jolliffe KA; Perrier S
    Angew Chem Int Ed Engl; 2018 Dec; 57(51):16678-16682. PubMed ID: 30383920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates.
    Chapman R; Danial M; Koh ML; Jolliffe KA; Perrier S
    Chem Soc Rev; 2012 Sep; 41(18):6023-41. PubMed ID: 22875035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug conjugation to cyclic peptide-polymer self-assembling nanotubes.
    Blunden BM; Chapman R; Danial M; Lu H; Jolliffe KA; Perrier S; Stenzel MH
    Chemistry; 2014 Sep; 20(40):12745-9. PubMed ID: 25146103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues.
    Rosenthal-Aizman K; Svensson G; Undén A
    J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Piezoelectric property of bundled peptide nanotubes stapled by bis-cyclic-β-peptide.
    Tabata Y; Takagaki K; Uji H; Kimura S
    J Pept Sci; 2019 Jan; 25(1):e3134. PubMed ID: 30393975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes.
    Calvelo M; Vázquez S; García-Fandiño R
    Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.