These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35582865)

  • 1. Similarity between the redox potentials of 3d transition-metal ions in polyanionic insertion materials and aqueous solutions.
    Ariyoshi K
    Phys Chem Chem Phys; 2022 Jun; 24(21):12984-12992. PubMed ID: 35582865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An oxalate cathode for lithium ion batteries with combined cationic and polyanionic redox.
    Yao W; Armstrong AR; Zhou X; Sougrati MT; Kidkhunthod P; Tunmee S; Sun C; Sattayaporn S; Lightfoot P; Ji B; Jiang C; Wu N; Tang Y; Cheng HM
    Nat Commun; 2019 Aug; 10(1):3483. PubMed ID: 31375663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure.
    Yabuuchi N; Takeuchi M; Nakayama M; Shiiba H; Ogawa M; Nakayama K; Ohta T; Endo D; Ozaki T; Inamasu T; Sato K; Komaba S
    Proc Natl Acad Sci U S A; 2015 Jun; 112(25):7650-5. PubMed ID: 26056288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in first principles computational research of cathode materials for lithium-ion batteries.
    Meng YS; Arroyo-de Dompablo ME
    Acc Chem Res; 2013 May; 46(5):1171-80. PubMed ID: 22489876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An overview of hydroxy-based polyanionic cathode insertion materials for metal-ion batteries.
    Singh S; Lochab S; Sharma L; Pralong V; Barpanda P
    Phys Chem Chem Phys; 2021 Sep; 23(34):18283-18299. PubMed ID: 34612373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-Lithium-Ion Battery Era: Recent Advances in Rechargeable Potassium-Ion Batteries.
    Wang B; Ang EH; Yang Y; Zhang Y; Ye M; Liu Q; Li CC
    Chemistry; 2021 Jan; 27(2):512-536. PubMed ID: 32510710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries.
    Yabuuchi N; Nakayama M; Takeuchi M; Komaba S; Hashimoto Y; Mukai T; Shiiba H; Sato K; Kobayashi Y; Nakao A; Yonemura M; Yamanaka K; Mitsuhara K; Ohta T
    Nat Commun; 2016 Dec; 7():13814. PubMed ID: 28008955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-Metal-Triggered High-Efficiency Lithium Ion Storage via Coordination Interactions with Redox-Active Croconate in One-Dimensional Metal-Organic Anode Materials.
    Zhang L; Cheng F; Shi W; Chen J; Cheng P
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6398-6406. PubMed ID: 29383935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the hydration of the alkali metal ions in aqueous solution.
    Mähler J; Persson I
    Inorg Chem; 2012 Jan; 51(1):425-38. PubMed ID: 22168370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anionic Redox Chemistry in Polysulfide Electrode Materials for Rechargeable Batteries.
    Grayfer ED; Pazhetnov EM; Kozlova MN; Artemkina SB; Fedorov VE
    ChemSusChem; 2017 Dec; 10(24):4805-4811. PubMed ID: 29164810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. All-solid-state ion-selective electrodes with redox-active lithium, sodium, and potassium insertion materials as the inner solid-contact layer.
    Komaba S; Akatsuka T; Ohura K; Suzuki C; Yabuuchi N; Kanazawa S; Tsuchiya K; Hasegawa T
    Analyst; 2017 Oct; 142(20):3857-3866. PubMed ID: 28901351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques.
    Doeff MM; Chen G; Cabana J; Richardson TJ; Mehta A; Shirpour M; Duncan H; Kim C; Kam KC; Conry T
    J Vis Exp; 2013 Nov; (81):e50594. PubMed ID: 24300777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in the Design of 3D-Structured Electrode Materials for Lithium-Metal Anodes.
    Park S; Jin HJ; Yun YS
    Adv Mater; 2020 Dec; 32(51):e2002193. PubMed ID: 32970326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyanionic Compounds for Potassium-Ion Batteries.
    Hosaka T; Shimamura T; Kubota K; Komaba S
    Chem Rec; 2019 Apr; 19(4):735-745. PubMed ID: 30378257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phendione-Transition-Metal Complexes with Bipolar Redox Activity for Lithium Batteries.
    Lakraychi AE; De Kreijger S; Gupta D; Elias B; Vlad A
    ChemSusChem; 2020 May; 13(9):2225-2231. PubMed ID: 32059070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Versatile Redox-Active Organic Materials for Rechargeable Energy Storage.
    Kwon G; Ko Y; Kim Y; Kim K; Kang K
    Acc Chem Res; 2021 Dec; 54(23):4423-4433. PubMed ID: 34793126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition-Metal Carbodiimides as Molecular Negative Electrode Materials for Lithium- and Sodium-Ion Batteries with Excellent Cycling Properties.
    Sougrati MT; Darwiche A; Liu X; Mahmoud A; Hermann RP; Jouen S; Monconduit L; Dronskowski R; Stievano L
    Angew Chem Int Ed Engl; 2016 Apr; 55(16):5090-5. PubMed ID: 26989882
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Material Design Concept of Lithium-Excess Electrode Materials with Rocksalt-Related Structures for Rechargeable Non-Aqueous Batteries.
    Yabuuchi N
    Chem Rec; 2019 Apr; 19(4):690-707. PubMed ID: 30311732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.