These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 35582898)

  • 1. Selective Reduction of Secondary Amides to Imines Catalysed by Schwartz's Reagent.
    Donnelly LJ; Berthet JC; Cantat T
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202206170. PubMed ID: 35582898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mild and selective hydrozirconation of amides to aldehydes using Cp2Zr(H)Cl: scope and mechanistic insight.
    Spletstoser JT; White JM; Tunoori AR; Georg GI
    J Am Chem Soc; 2007 Mar; 129(11):3408-19. PubMed ID: 17315870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlled and chemoselective reduction of secondary amides.
    Pelletier G; Bechara WS; Charette AB
    J Am Chem Soc; 2010 Sep; 132(37):12817-9. PubMed ID: 20735125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zn-Catalyzed Regioselective and Chemoselective Reduction of Aldehydes, Ketones and Imines.
    Zhang M; Jiao H; Ma H; Li R; Han B; Zhang Y; Wang J
    Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile access to tuneable Schwartz's reagents: oxidative addition products from the reaction of amide N-H bonds with reduced zirconocene complexes.
    Haehnel M; Yim JC; Schafer LL; Rosenthal U
    Angew Chem Int Ed Engl; 2013 Oct; 52(43):11415-9. PubMed ID: 24038845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis.
    Kehner RA; Zhang G; Bayeh-Romero L
    J Am Chem Soc; 2023 Mar; 145(9):4921-4927. PubMed ID: 36809854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemoselective reductive nucleophilic addition to tertiary amides, secondary amides, and N-methoxyamides.
    Nakajima M; Oda Y; Wada T; Minamikawa R; Shirokane K; Sato T; Chida N
    Chemistry; 2014 Dec; 20(52):17565-71. PubMed ID: 25345400
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemoselective N-deacetylation of protected nucleosides and nucleotides promoted by Schwartz's reagent.
    Ferrari V; Serpi M; McGuigan C; Pertusati F
    Nucleosides Nucleotides Nucleic Acids; 2015; 34(11):799-814. PubMed ID: 26492555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and characterization of group 4 metal amides with new C2-symmetric binaphthyldiamine-based ligands and their use as catalysts for asymmetric hydroamination/cyclization.
    Zi G; Zhang F; Xiang L; Chen Y; Fang W; Song H
    Dalton Trans; 2010 May; 39(17):4048-61. PubMed ID: 20390168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemoselective Reduction of Azlactones Using Schwartz's Reagent.
    Pinheiro DLJ; Ávila EP; Batista GMF; Amarante GW
    J Org Chem; 2017 Jun; 82(11):5981-5985. PubMed ID: 28493704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study of the Cp2Zr-catalyzed hydrosilylation of ethylene. Reaction mechanism including new sigma-bond activation.
    Sakaki S; Takayama T; Sumimoto M; Sugimoto M
    J Am Chem Soc; 2004 Mar; 126(10):3332-48. PubMed ID: 15012164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual Activation of Unsaturated Amides with Schwartz's Reagent: A Diastereoselective Access to Cyclopentanols and N,O-Dimethylcyclopentylhydroxylamines.
    Coelho A; Souvenir Zafindrajaona MS; Vallée A; Behr JB; Vasse JL
    Chemistry; 2022 Jan; 28(3):e202103789. PubMed ID: 34797605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming inaccessibility of fluorinated imines - synthesis of functionalized amines from readily available fluoroacetamides.
    Czerwiński PJ; Furman B
    Chem Commun (Camb); 2019 Aug; 55(64):9436-9439. PubMed ID: 31304490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of amides to esters by the nickel-catalysed activation of amide C-N bonds.
    Hie L; Fine Nathel NF; Shah TK; Baker EL; Hong X; Yang YF; Liu P; Houk KN; Garg NK
    Nature; 2015 Aug; 524(7563):79-83. PubMed ID: 26200342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilization of Cyclic Amides as Masked Aldehyde Equivalents in Reductive Amination Reactions.
    Prince RJ; Gao F; Pazienza JE; Marx IE; Schulz J; Hopkins BT
    J Org Chem; 2019 Jun; 84(12):7936-7949. PubMed ID: 31117567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphite-supported gold nanoparticles as efficient catalyst for aerobic oxidation of benzylic amines to imines and N-substituted 1,2,3,4-tetrahydroisoquinolines to amides: synthetic applications and mechanistic study.
    So MH; Liu Y; Ho CM; Che CM
    Chem Asian J; 2009 Oct; 4(10):1551-61. PubMed ID: 19777526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Chemoselective Deoxygenation of N-Heterocyclic
    An JH; Kim KD; Lee JH
    J Org Chem; 2021 Feb; 86(3):2876-2894. PubMed ID: 33435683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective rhodium-catalyzed reduction of tertiary amides in amino acid esters and peptides.
    Das S; Li Y; Bornschein C; Pisiewicz S; Kiersch K; Michalik D; Gallou F; Junge K; Beller M
    Angew Chem Int Ed Engl; 2015 Oct; 54(42):12389-93. PubMed ID: 26189442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective Cobalt-Catalyzed Reduction of Terminal Alkenes and Alkynes Using (EtO)
    Raya B; Biswas S; RajanBabu TV
    ACS Catal; 2016 Sep; 6(9):6318-6323. PubMed ID: 28078166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. η(6) -Arene-Zirconium-PNP-Pincer Complexes: Mechanism of Their Hydrogenolytic Formation and Their Reactivity as Zirconium(II) Synthons.
    Plundrich GT; Wadepohl H; Clot E; Gade LH
    Chemistry; 2016 Jun; 22(27):9283-92. PubMed ID: 27258989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.