These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 35583141)

  • 1. Transition in the growth mode of plasmonic bubbles in binary liquids.
    Detert M; Chen Y; Zandvliet HJW; Lohse D
    Soft Matter; 2022 Jun; 18(21):4136-4145. PubMed ID: 35583141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet plume emission during plasmonic bubble growth in ternary liquids.
    Li X; Chen Y; Wang Y; Chong KL; Verzicco R; Zandvliet HJW; Lohse D
    Phys Rev E; 2021 Aug; 104(2-2):025101. PubMed ID: 34525659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'Bubble chamber model' of fast atom bombardment induced processes.
    Kosevich MV; Shelkovsky VS; Boryak OA; Orlov VV
    Rapid Commun Mass Spectrom; 2003; 17(15):1781-92. PubMed ID: 12872284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field.
    Xi X; Cegla F; Mettin R; Holsteyns F; Lippert A
    J Acoust Soc Am; 2014 Apr; 135(4):1731-41. PubMed ID: 25234973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters.
    Namura K; Nakajima K; Suzuki M
    Nanotechnology; 2018 Feb; 29(6):065201. PubMed ID: 29251265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of solutal Marangoni-driven vortical flows and enhancement of mixing efficiency.
    Park J; Ryu J; Sung HJ; Kim H
    J Colloid Interface Sci; 2020 Mar; 561():408-415. PubMed ID: 31733837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Marangoni Contraction of Evaporating Sessile Droplets of Binary Mixtures.
    Karpitschka S; Liebig F; Riegler H
    Langmuir; 2017 May; 33(19):4682-4687. PubMed ID: 28421771
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasmonic Bubble Nucleation in Binary Liquids.
    Detert M; Zeng B; Wang Y; Le The H; Zandvliet HJW; Lohse D
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2591-2597. PubMed ID: 32030112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theory and experiment on particle trapping and manipulation via optothermally generated bubbles.
    Zhao C; Xie Y; Mao Z; Zhao Y; Rufo J; Yang S; Guo F; Mai JD; Huang TJ
    Lab Chip; 2014 Jan; 14(2):384-91. PubMed ID: 24276624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic Microbubble Dynamics in Binary Liquids.
    Li X; Wang Y; Zeng B; Detert M; Prosperetti A; Zandvliet HJW; Lohse D
    J Phys Chem Lett; 2020 Oct; 11(20):8631-8637. PubMed ID: 32960058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D trapping of microbubbles by the Marangoni force.
    Sarabia-Alonso JA; Ortega-Mendoza JG; Mansurova S; Muñoz-Pérez FM; Ramos-García R
    Opt Lett; 2021 Dec; 46(23):5786-5789. PubMed ID: 34851890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of surface active substances on bubble motion and collision with various interfaces.
    Malysa K; Krasowska M; Krzan M
    Adv Colloid Interface Sci; 2005 Jun; 114-115():205-25. PubMed ID: 15936293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gas micronuclei that underlie decompression bubbles and decompression sickness have not been identified.
    Doolette DJ
    Diving Hyperb Med; 2019 Mar; 49(1):64. PubMed ID: 30856670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activating Bubble's Escape, Coalescence, and Departure under an Electric Field Effect.
    Yan R; Pham R; Chen CL
    Langmuir; 2020 Dec; 36(51):15558-15571. PubMed ID: 33332129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Growth and Detachment of Oxygen Bubbles Induced by Gold-Catalyzed Decomposition of Hydrogen Peroxide.
    Lv P; Le The H; Eijkel J; Van den Berg A; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20769-20776. PubMed ID: 28983387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of microparticles on the shape and surface tension of static bubbles.
    Wang H; Brito-Parada PR
    J Colloid Interface Sci; 2021 Apr; 587():14-23. PubMed ID: 33360886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating.
    Zhang Q; Pang Y; Schiffbauer J; Jemcov A; Chang HC; Lee E; Luo T
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48525-48532. PubMed ID: 31794181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.