These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 3558318)

  • 1. Nickel uptake in Bradyrhizobium japonicum.
    Stults LW; Mallick S; Maier RJ
    J Bacteriol; 1987 Apr; 169(4):1398-402. PubMed ID: 3558318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive inhibition of an energy-dependent nickel transport system by divalent cations in Bradyrhizobium japonicum JH.
    Fu CL; Maier RJ
    Appl Environ Microbiol; 1991 Dec; 57(12):3511-6. PubMed ID: 1785926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdate transport by Bradyrhizobium japonicum bacteroids.
    Maier RJ; Graham L
    J Bacteriol; 1988 Dec; 170(12):5613-9. PubMed ID: 3192511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy-dependent transport of nickel by Clostridium pasteurianum.
    Bryson MF; Drake HL
    J Bacteriol; 1988 Jan; 170(1):234-8. PubMed ID: 3335482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnesium transport in Salmonella typhimurium. Regulation of mgtA and mgtB expression.
    Snavely MD; Gravina SA; Cheung TT; Miller CG; Maguire ME
    J Biol Chem; 1991 Jan; 266(2):824-9. PubMed ID: 1898738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nickel transport in Methanobacterium bryantii.
    Jarrell KF; Sprott GD
    J Bacteriol; 1982 Sep; 151(3):1195-203. PubMed ID: 7107554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nickel accumulation and storage in Bradyrhizobium japonicum.
    Maier RJ; Pihl TD; Stults L; Sray W
    Appl Environ Microbiol; 1990 Jun; 56(6):1905-11. PubMed ID: 2200341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni(2+) transport and accumulation in Rhodospirillum rubrum.
    Watt RK; Ludden PW
    J Bacteriol; 1999 Aug; 181(15):4554-60. PubMed ID: 10419953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a locus within the hydrogenase gene cluster involved in intracellular nickel metabolism in Bradyrhizobium japonicum.
    Fu CL; Maier RJ
    Appl Environ Microbiol; 1991 Dec; 57(12):3502-10. PubMed ID: 1785925
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of hydrogenase in Hupc strains of Bradyrhizobium japonicum.
    Kim H; Gabel C; Maier RJ
    Arch Microbiol; 1993; 160(1):43-50. PubMed ID: 8352650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Copper uptake in wild type and copper metallothionein-deficient Saccharomyces cerevisiae. Kinetics and mechanism.
    Lin CM; Kosman DJ
    J Biol Chem; 1990 Jun; 265(16):9194-200. PubMed ID: 2188974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ferrous iron uptake by Bifidobacterium bifidum var. pennsylvanicus: the effect of metals and metabolic inhibitors.
    Bezkorovainy A; Solberg L; Poch M; Miller-Catchpole R
    Int J Biochem; 1987; 19(6):517-22. PubMed ID: 3038634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nickel-dependent reconstitution of hydrogenase apoprotein in Bradyrhizobium japonicum Hupc mutants and direct evidence for a nickel metabolism locus involved in nickel incorporation into the enzyme.
    Fu C; Maier RJ
    Arch Microbiol; 1992; 157(6):493-8. PubMed ID: 1503531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The HypB protein from Bradyrhizobium japonicum can store nickel and is required for the nickel-dependent transcriptional regulation of hydrogenase.
    Olson JW; Fu C; Maier RJ
    Mol Microbiol; 1997 Apr; 24(1):119-28. PubMed ID: 9140970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel uptake by Pseudomonas aeruginosa: role of modifying factors.
    Sar P; Kazy SK; Asthana RK; Singh SP
    Curr Microbiol; 1998 Nov; 37(5):306-11. PubMed ID: 9767709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface binding and uptake of nickel(II) in human epithelial kidney cells: modulation by ionomycin, nicardipine and metals.
    Refsvik T; Andreassen T
    Carcinogenesis; 1995 May; 16(5):1107-12. PubMed ID: 7767972
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co2+ and Ni2+ resistance in Saccharomyces cerevisiae associated with a reduction in the accumulation of Mg2+.
    Joho M; Tarumi K; Inouhe M; Tohoyama H; Murayama T
    Microbios; 1991; 67(272-273):177-86. PubMed ID: 1779877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains of Neurospora crassa.
    Maruthi Mohan P; Sivarama Sastry K
    Biochem J; 1983 Apr; 212(1):205-10. PubMed ID: 6223632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HypB protein of Bradyrhizobium japonicum is a metal-binding GTPase capable of binding 18 divalent nickel ions per dimer.
    Fu C; Olson JW; Maier RJ
    Proc Natl Acad Sci U S A; 1995 Mar; 92(6):2333-7. PubMed ID: 7892266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of hydrogenase in Rhizobium japonicum: analysis of mutants altered in regulation by carbon substrates and oxygen.
    Merberg D; O'Hara EB; Maier RJ
    J Bacteriol; 1983 Dec; 156(3):1236-42. PubMed ID: 6315681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.