These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 35583342)
1. Single-Molecule Sensing of an Anticancer Therapeutic Protein-Protein Interaction Using the Chemically Modified OmpG Nanopore. Hwang HJ; Kim JS; Lee J; Min JS; Jeong KB; Kim E; Lee MK; Chi SW Anal Chem; 2022 May; 94(21):7449-7454. PubMed ID: 35583342 [TBL] [Abstract][Full Text] [Related]
2. Resolved single-molecule detection of individual species within a mixture of anti-biotin antibodies using an engineered monomeric nanopore. Fahie M; Chisholm C; Chen M ACS Nano; 2015 Feb; 9(2):1089-98. PubMed ID: 25575121 [TBL] [Abstract][Full Text] [Related]
3. Tuning Protein Discrimination Through Altering the Sampling Interface Formed between the Analyte and the OmpG Nanopore. Fahie MA; Candido J; Andree G; Chen M ACS Sens; 2021 Mar; 6(3):1286-1294. PubMed ID: 33599487 [TBL] [Abstract][Full Text] [Related]
4. Modifying the pH sensitivity of OmpG nanopore for improved detection at acidic pH. Fahie MAV; Li F; Palmer C; Yoon C; Chen M Biophys J; 2022 Mar; 121(5):731-741. PubMed ID: 35131293 [TBL] [Abstract][Full Text] [Related]
5. Selective Detection of Protein Homologues in Serum Using an OmpG Nanopore. Fahie MA; Yang B; Mullis M; Holden MA; Chen M Anal Chem; 2015 Nov; 87(21):11143-9. PubMed ID: 26451707 [TBL] [Abstract][Full Text] [Related]
6. Protein Analyte Sensing with an Outer Membrane Protein G (OmpG) Nanopore. Fahie MAV; Yang B; Chisholm CM; Chen M Methods Mol Biol; 2021; 2186():77-94. PubMed ID: 32918731 [TBL] [Abstract][Full Text] [Related]
7. Improving Single-Molecule Antibody Detection Selectivity through Optimization of Peptide Epitope Presentation in OmpG Nanopore. Kim M; Foster JC; Moore MD; Chen M ACS Sens; 2023 Jul; 8(7):2673-2680. PubMed ID: 37379512 [TBL] [Abstract][Full Text] [Related]
8. A pH-independent quiet OmpG pore with enhanced electrostatic repulsion among the extracellular loops. Pham B; Chisholm CM; Foster J; Friis E; Fahie MA; Chen M Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183485. PubMed ID: 33058855 [TBL] [Abstract][Full Text] [Related]
9. Quiet Outer Membrane Protein G (OmpG) Nanopore for Biosensing. Sanganna Gari RR; Seelheim P; Liang B; Tamm LK ACS Sens; 2019 May; 4(5):1230-1235. PubMed ID: 30990011 [TBL] [Abstract][Full Text] [Related]
10. Electrostatic Interactions between OmpG Nanopore and Analyte Protein Surface Can Distinguish between Glycosylated Isoforms. Fahie MA; Chen M J Phys Chem B; 2015 Aug; 119(32):10198-206. PubMed ID: 26181080 [TBL] [Abstract][Full Text] [Related]
11. An Engineered OmpG Nanopore with Displayed Peptide Motifs for Single-Molecule Multiplex Protein Detection. Foster JC; Pham B; Pham R; Kim M; Moore MD; Chen M Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202214566. PubMed ID: 36457283 [TBL] [Abstract][Full Text] [Related]
12. A Selective Activity-Based Approach for Analysis of Enzymes with an OmpG Nanopore. Fahie MAV; Pham B; Li F; Chen M Methods Mol Biol; 2021; 2186():115-133. PubMed ID: 32918733 [TBL] [Abstract][Full Text] [Related]
13. Single-molecule fingerprinting of protein-drug interaction using a funneled biological nanopore. Jeong KB; Ryu M; Kim JS; Kim M; Yoo J; Chung M; Oh S; Jo G; Lee SG; Kim HM; Lee MK; Chi SW Nat Commun; 2023 Apr; 14(1):1461. PubMed ID: 37015934 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of OmpG pH-Dependent Gating from Loop Ensemble and Single Channel Studies. Perez-Rathke A; Fahie MA; Chisholm C; Liang J; Chen M J Am Chem Soc; 2018 Jan; 140(3):1105-1115. PubMed ID: 29262680 [TBL] [Abstract][Full Text] [Related]
15. Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Rahmani M; Aust MM; Attkisson E; Williams DC; Ferreira-Gonzalez A; Grant S Cancer Res; 2013 Feb; 73(4):1340-51. PubMed ID: 23243017 [TBL] [Abstract][Full Text] [Related]
16. In non-transformed cells Bak activates upon loss of anti-apoptotic Bcl-XL and Mcl-1 but in the absence of active BH3-only proteins. Senft D; Weber A; Saathoff F; Berking C; Heppt MV; Kammerbauer C; Rothenfusser S; Kellner S; Kurgyis Z; Besch R; Häcker G Cell Death Dis; 2015 Nov; 6(11):e1996. PubMed ID: 26610208 [TBL] [Abstract][Full Text] [Related]
17. A Nanopore Approach for Analysis of Caspase-7 Activity in Cell Lysates. Pham B; Eron SJ; Hill ME; Li X; Fahie MA; Hardy JA; Chen M Biophys J; 2019 Sep; 117(5):844-855. PubMed ID: 31427065 [TBL] [Abstract][Full Text] [Related]
18. Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Hockings C; Anwari K; Ninnis RL; Brouwer J; O'Hely M; Evangelista M; Hinds MG; Czabotar PE; Lee EF; Fairlie WD; Dewson G; Kluck RM Cell Death Dis; 2015 Apr; 6(4):e1735. PubMed ID: 25906158 [TBL] [Abstract][Full Text] [Related]
19. The BH3 alpha-helical mimic BH3-M6 disrupts Bcl-X(L), Bcl-2, and MCL-1 protein-protein interactions with Bax, Bak, Bad, or Bim and induces apoptosis in a Bax- and Bim-dependent manner. Kazi A; Sun J; Doi K; Sung SS; Takahashi Y; Yin H; Rodriguez JM; Becerril J; Berndt N; Hamilton AD; Wang HG; Sebti SM J Biol Chem; 2011 Mar; 286(11):9382-92. PubMed ID: 21148306 [TBL] [Abstract][Full Text] [Related]
20. NBK/BIK antagonizes MCL-1 and BCL-XL and activates BAK-mediated apoptosis in response to protein synthesis inhibition. Shimazu T; Degenhardt K; Nur-E-Kamal A; Zhang J; Yoshida T; Zhang Y; Mathew R; White E; Inouye M Genes Dev; 2007 Apr; 21(8):929-41. PubMed ID: 17403773 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]