These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 35583524)
1. The air quality of Palangka Raya, Central Kalimantan, Indonesia: The impacts of forest fires on visibility. Santoso M; Hopke PK; Damastuti E; Lestiani DD; Kurniawati S; Kusmartini I; Prakoso D; Kumalasari D; Riadi A J Air Waste Manag Assoc; 2022 Nov; 72(11):1191-1200. PubMed ID: 35583524 [TBL] [Abstract][Full Text] [Related]
2. Atmospheric black carbon in PM2.5 in Indonesian cities. Santoso M; Lestiani DD; Hopke PK J Air Waste Manag Assoc; 2013 Sep; 63(9):1022-5. PubMed ID: 24151677 [TBL] [Abstract][Full Text] [Related]
3. Assessing the health impacts of peatland fires: a case study for Central Kalimantan, Indonesia. Uda SK; Hein L; Atmoko D Environ Sci Pollut Res Int; 2019 Oct; 26(30):31315-31327. PubMed ID: 31471850 [TBL] [Abstract][Full Text] [Related]
4. The Influence of South East Asia Forest Fires on Ambient Particulate Matter Concentrations in Singapore: An Ecological Study Using Random Forest and Vector Autoregressive Models. Rajarethinam J; Aik J; Tian J Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33327455 [TBL] [Abstract][Full Text] [Related]
5. Peat-fire-related air pollution in Central Kalimantan, Indonesia. Hayasaka H; Noguchi I; Putra EI; Yulianti N; Vadrevu K Environ Pollut; 2014 Dec; 195():257-66. PubMed ID: 25087200 [TBL] [Abstract][Full Text] [Related]
6. The health impacts of Indonesian peatland fires. Hein L; Spadaro JV; Ostro B; Hammer M; Sumarga E; Salmayenti R; Boer R; Tata H; Atmoko D; Castañeda JP Environ Health; 2022 Jul; 21(1):62. PubMed ID: 35790967 [TBL] [Abstract][Full Text] [Related]
7. Examining the status of forest fire emission in 2020 and its connection to COVID-19 incidents in West Coast regions of the United States. Sannigrahi S; Pilla F; Maiti A; Bar S; Bhatt S; Kaparwan A; Zhang Q; Keesstra S; Cerda A Environ Res; 2022 Jul; 210():112818. PubMed ID: 35104482 [TBL] [Abstract][Full Text] [Related]
8. Ground-based measurements of column-averaged carbon dioxide molar mixing ratios in a peatland fire-prone area of Central Kalimantan, Indonesia. Iriana W; Tonokura K; Inoue G; Kawasaki M; Kozan O; Fujimoto K; Ohashi M; Morino I; Someya Y; Imasu R; Rahman MA; Gunawan D Sci Rep; 2018 May; 8(1):8437. PubMed ID: 29855509 [TBL] [Abstract][Full Text] [Related]
9. Associations Between Ambient Particulate Air Pollution and Cognitive Function in Indonesian Children Living in Forest Fire-Prone Provinces. Jalaludin B; Garden FL; Chrzanowska A; Haryanto B; Cowie CT; Lestari F; Morgan G; Mazumdar S; Metcalf K; Marks GB Asia Pac J Public Health; 2022 Jan; 34(1):96-105. PubMed ID: 34243677 [TBL] [Abstract][Full Text] [Related]
10. The London low emission zone baseline study. Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924 [TBL] [Abstract][Full Text] [Related]
11. Environmental Particulate Matter Levels during 2017 Large Forest Fires and Megafires in the Center Region of Portugal: A Public Health Concern? Oliveira M; Delerue-Matos C; Pereira MC; Morais S Int J Environ Res Public Health; 2020 Feb; 17(3):. PubMed ID: 32041266 [TBL] [Abstract][Full Text] [Related]
12. The impact of wildfires on air pollution and health across land use categories in Brazil over a 16-year period. Cobelo I; Castelhano FJ; Borge R; Roig HL; Adams M; Amini H; Koutrakis P; Réquia WJ Environ Res; 2023 May; 224():115522. PubMed ID: 36813066 [TBL] [Abstract][Full Text] [Related]
13. Seasonal anomaly of particulate matter concentration in an equatorial climate: Evaluating the transboundary impact from neighboring provinces on Padang City, Indonesia. Amin M; Ariefianto T; Kaula D; Husni N; Serlina Y; Suryati I; Bachtiar VS Environ Monit Assess; 2024 Oct; 196(11):1013. PubMed ID: 39365342 [TBL] [Abstract][Full Text] [Related]
14. Detection of forest fires and pollutant plume dispersion using IoT air quality sensors. Lertsinsrubtavee A; Kanabkaew T; Raksakietisak S Environ Pollut; 2023 Dec; 338():122701. PubMed ID: 37804907 [TBL] [Abstract][Full Text] [Related]
15. Wildfire and prescribed burning impacts on air quality in the United States. Jaffe DA; O'Neill SM; Larkin NK; Holder AL; Peterson DL; Halofsky JE; Rappold AG J Air Waste Manag Assoc; 2020 Jun; 70(6):583-615. PubMed ID: 32240055 [TBL] [Abstract][Full Text] [Related]
16. Indoor particulate air pollution from open fires and the cognitive function of older people. Maher BA; O'Sullivan V; Feeney J; Gonet T; Anne Kenny R Environ Res; 2021 Jan; 192():110298. PubMed ID: 33039528 [TBL] [Abstract][Full Text] [Related]
17. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements. Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P; Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496 [TBL] [Abstract][Full Text] [Related]
18. California Case Study of Wildfires and Prescribed Burns: PM Kiely L; Neyestani SE; Binte-Shahid S; York RA; Porter WC; Barsanti KC Environ Sci Technol; 2024 Mar; 58(12):5210-5219. PubMed ID: 38483184 [TBL] [Abstract][Full Text] [Related]