BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 35583649)

  • 1. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials.
    Demir E; Demir FT; Marcos R
    Adv Exp Med Biol; 2022; 1357():275-301. PubMed ID: 35583649
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Demir E
    J Toxicol Environ Health A; 2020 Jun; 83(11-12):456-469. PubMed ID: 32515692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of
    Ng CT; Yu LE; Ong CN; Bay BH; Baeg GH
    Nanotoxicology; 2019 May; 13(4):429-446. PubMed ID: 30451554
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Demir E
    Nanotoxicology; 2020 Nov; 14(9):1271-1279. PubMed ID: 32969292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: Studies with Drosophila melanogaster as a promising in vivo model.
    Alaraby M; Hernández A; Annangi B; Demir E; Bach J; Rubio L; Creus A; Marcos R
    Nanotoxicology; 2015; 9(6):749-59. PubMed ID: 25358738
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Drosophila melanogaster as a dynamic in vivo model organism reveals the hidden effects of interactions between microplastic/nanoplastic and heavy metals.
    Demir E; Turna Demir F
    J Appl Toxicol; 2023 Feb; 43(2):212-219. PubMed ID: 35644834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster.
    Vecchio G; Galeone A; Brunetti V; Maiorano G; Rizzello L; Sabella S; Cingolani R; Pompa PP
    Nanomedicine; 2012 Jan; 8(1):1-7. PubMed ID: 22094122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on nanotoxicity and nanogenotoxicity of different shapes of nanomaterials.
    Demir E
    J Appl Toxicol; 2021 Jan; 41(1):118-147. PubMed ID: 33111384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drosophotoxicology: An Emerging Research Area for Assessing Nanoparticles Interaction with Living Organisms.
    Chifiriuc MC; Ratiu AC; Popa M; Ecovoiu AA
    Int J Mol Sci; 2016 Feb; 17(2):36. PubMed ID: 26907252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Safety assessment of nanomaterials in reproductive developmental field].
    Yamashita K; Yoshioka Y
    Yakugaku Zasshi; 2012; 132(3):331-5. PubMed ID: 22382838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drosophila melanogaster as a model organism to study nanotoxicity.
    Ong C; Yung LY; Cai Y; Bay BH; Baeg GH
    Nanotoxicology; 2015 May; 9(3):396-403. PubMed ID: 25051331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drosophila melanogaster as a suitable in vivo model to determine potential side effects of nanomaterials: A review.
    Alaraby M; Annangi B; Marcos R; Hernández A
    J Toxicol Environ Health B Crit Rev; 2016; 19(2):65-104. PubMed ID: 27128498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Current Understanding of Autophagy in Nanomaterial Toxicity and Its Implementation in Safety Assessment-Related Alternative Testing Strategies.
    Chen RJ; Chen YY; Liao MY; Lee YH; Chen ZY; Yan SJ; Yeh YL; Yang LX; Lee YL; Wu YH; Wang YJ
    Int J Mol Sci; 2020 Mar; 21(7):. PubMed ID: 32235610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating the toxicity of selected types of nanochemicals.
    Kumar V; Kumari A; Guleria P; Yadav SK
    Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive study of the harmful effects of ZnO nanoparticles using Drosophila melanogaster as an in vivo model.
    Alaraby M; Annangi B; Hernández A; Creus A; Marcos R
    J Hazard Mater; 2015 Oct; 296():166-174. PubMed ID: 25917694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential adverse effects of engineered nanomaterials commonly used in food on the miRNome.
    Lim JP; Baeg GH; Srinivasan DK; Dheen ST; Bay BH
    Food Chem Toxicol; 2017 Nov; 109(Pt 1):771-779. PubMed ID: 28720288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotoxic testing of titanium dioxide anatase nanoparticles using the wing-spot test and the comet assay in Drosophila.
    Carmona ER; Escobar B; Vales G; Marcos R
    Mutat Res Genet Toxicol Environ Mutagen; 2015 Jan; 778():12-21. PubMed ID: 25726144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of manufactured nanomaterials on fishes: a target organ and body systems physiology approach.
    Handy RD; Al-Bairuty G; Al-Jubory A; Ramsden CS; Boyle D; Shaw BJ; Henry TB
    J Fish Biol; 2011 Oct; 79(4):821-53. PubMed ID: 21967577
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulatory ecotoxicity testing of nanomaterials - proposed modifications of OECD test guidelines based on laboratory experience with silver and titanium dioxide nanoparticles.
    Hund-Rinke K; Baun A; Cupi D; Fernandes TF; Handy R; Kinross JH; Navas JM; Peijnenburg W; Schlich K; Shaw BJ; Scott-Fordsmand JJ
    Nanotoxicology; 2016 Dec; 10(10):1442-1447. PubMed ID: 27592624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel insights into biodegradation, interaction, internalization and impacts of high-aspect-ratio TiO
    Alaraby M; Hernández A; Marcos R
    J Hazard Mater; 2021 May; 409():124474. PubMed ID: 33187802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.