These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
302 related articles for article (PubMed ID: 35583712)
1. Combining multiparametric MRI features-based transfer learning and clinical parameters: application of machine learning for the differentiation of uterine sarcomas from atypical leiomyomas. Dai M; Liu Y; Hu Y; Li G; Zhang J; Xiao Z; Lv F Eur Radiol; 2022 Nov; 32(11):7988-7997. PubMed ID: 35583712 [TBL] [Abstract][Full Text] [Related]
2. Machine Learning to Differentiate T2-Weighted Hyperintense Uterine Leiomyomas from Uterine Sarcomas by Utilizing Multiparametric Magnetic Resonance Quantitative Imaging Features. Nakagawa M; Nakaura T; Namimoto T; Iyama Y; Kidoh M; Hirata K; Nagayama Y; Yuki H; Oda S; Utsunomiya D; Yamashita Y Acad Radiol; 2019 Oct; 26(10):1390-1399. PubMed ID: 30661978 [TBL] [Abstract][Full Text] [Related]
3. Differentiating Uterine Sarcoma From Atypical Leiomyoma on Preoperative Magnetic Resonance Imaging Using Logistic Regression Classifier: Added Value of Diffusion-Weighted Imaging-Based Quantitative Parameters. Kim H; Rha SE; Shin YR; Kim EH; Park SY; Lee SL; Lee A; Kim MR Korean J Radiol; 2024 Jan; 25(1):43-54. PubMed ID: 38184768 [TBL] [Abstract][Full Text] [Related]
4. Diagnostic Algorithm to Differentiate Benign Atypical Leiomyomas from Malignant Uterine Sarcomas with Diffusion-weighted MRI. Abdel Wahab C; Jannot AS; Bonaffini PA; Bourillon C; Cornou C; Lefrère-Belda MA; Bats AS; Thomassin-Naggara I; Bellucci A; Reinhold C; Fournier LS Radiology; 2020 Nov; 297(2):361-371. PubMed ID: 32930650 [TBL] [Abstract][Full Text] [Related]
5. A multiparametric MRI-based machine learning to distinguish between uterine sarcoma and benign leiomyoma: comparison with Nakagawa M; Nakaura T; Namimoto T; Iyama Y; Kidoh M; Hirata K; Nagayama Y; Oda S; Sakamoto F; Shiraishi S; Yamashita Y Clin Radiol; 2019 Feb; 74(2):167.e1-167.e7. PubMed ID: 30471748 [TBL] [Abstract][Full Text] [Related]
6. A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI. Wang T; Gong J; Li Q; Chu C; Shen W; Peng W; Gu Y; Li W Eur Radiol; 2021 Aug; 31(8):6125-6135. PubMed ID: 33486606 [TBL] [Abstract][Full Text] [Related]
7. Voxel-based supervised machine learning of peripheral zone prostate cancer using noncontrast multiparametric MRI. Gholizadeh N; Simpson J; Ramadan S; Denham J; Lau P; Siddique S; Dowling J; Welsh J; Chalup S; Greer PB J Appl Clin Med Phys; 2020 Oct; 21(10):179-191. PubMed ID: 32770600 [TBL] [Abstract][Full Text] [Related]
8. Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning. Liu W; Cheng Y; Liu Z; Liu C; Cattell R; Xie X; Wang Y; Yang X; Ye W; Liang C; Li J; Gao Y; Huang C; Liang C Acad Radiol; 2021 Feb; 28(2):e44-e53. PubMed ID: 32278690 [TBL] [Abstract][Full Text] [Related]
9. Investigating the diagnostic value of quantitative parameters based on T2-weighted and contrast-enhanced MRI with psoas muscle and outer myometrium as internal references for differentiating uterine sarcomas from leiomyomas at 3T MRI. Malek M; Rahmani M; Seyyed Ebrahimi SM; Tabibian E; Alidoosti A; Rahimifar P; Akhavan S; Gandomkar Z Cancer Imaging; 2019 Apr; 19(1):20. PubMed ID: 30935419 [TBL] [Abstract][Full Text] [Related]
10. Nonenhanced MRI-based radiomics model for preoperative prediction of nonperfused volume ratio for high-intensity focused ultrasound ablation of uterine leiomyomas. Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F Int J Hyperthermia; 2021; 38(1):1349-1358. PubMed ID: 34486913 [TBL] [Abstract][Full Text] [Related]
11. A machine learning approach for distinguishing uterine sarcoma from leiomyomas based on perfusion weighted MRI parameters. Malek M; Gity M; Alidoosti A; Oghabian Z; Rahimifar P; Seyed Ebrahimi SM; Tabibian E; Oghabian MA Eur J Radiol; 2019 Jan; 110():203-211. PubMed ID: 30599861 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Clinical Outcome for High-Intensity Focused Ultrasound Ablation of Uterine Leiomyomas Using Multiparametric MRI Radiomics-Based Machine Leaning Model. Zheng Y; Chen L; Liu M; Wu J; Yu R; Lv F Front Oncol; 2021; 11():618604. PubMed ID: 34567999 [TBL] [Abstract][Full Text] [Related]
13. Classification of pulmonary lesion based on multiparametric MRI: utility of radiomics and comparison of machine learning methods. Wang X; Wan Q; Chen H; Li Y; Li X Eur Radiol; 2020 Aug; 30(8):4595-4605. PubMed ID: 32222795 [TBL] [Abstract][Full Text] [Related]
14. Multiparametric MRI-based machine learning models for preoperatively predicting rectal adenoma with canceration. Li P; Song G; Wu R; Li H; Zhang R; Zuo P; Li A MAGMA; 2021 Oct; 34(5):707-716. PubMed ID: 33646452 [TBL] [Abstract][Full Text] [Related]
15. Radiomics based on T2-weighted and diffusion-weighted MR imaging for preoperative prediction of tumor deposits in rectal cancer. Sun Z; Xia F; Lv W; Li J; Zou Y; Wu J Am J Surg; 2024 Jun; 232():59-67. PubMed ID: 38272767 [TBL] [Abstract][Full Text] [Related]
16. [Application of Automated Machine Learning Based on Radiomics Features of T2WI and RS-EPI DWI to Predict Preoperative T Staging of Rectal Cancer]. Wen DG; Hu SX; Li ZL; Deng XB; Tian C; Li X; Wang XR; Leng Q; Xia CC Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):698-705. PubMed ID: 34323052 [TBL] [Abstract][Full Text] [Related]
17. Preoperative Extrapancreatic Extension Prediction in Patients with Pancreatic Cancer Using Multiparameter MRI and Machine Learning-Based Radiomics Model. Xie N; Fan X; Xie H; Lu J; Yu L; Liu H; Wang H; Yin X; Li B Acad Radiol; 2023 Jul; 30(7):1306-1316. PubMed ID: 36244870 [TBL] [Abstract][Full Text] [Related]
18. Preliminary utilization of radiomics in differentiating uterine sarcoma from atypical leiomyoma: Comparison on diagnostic efficacy of MRI features and radiomic features. Xie H; Hu J; Zhang X; Ma S; Liu Y; Wang X Eur J Radiol; 2019 Jun; 115():39-45. PubMed ID: 31084757 [TBL] [Abstract][Full Text] [Related]
19. Predicting the Grade of Prostate Cancer Based on a Biparametric MRI Radiomics Signature. Zhang L; Zhe X; Tang M; Zhang J; Ren J; Zhang X; Li L Contrast Media Mol Imaging; 2021; 2021():7830909. PubMed ID: 35024015 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Dynamic Contrast-Enhanced MRI and Non-Mono-Exponential Model-Based Diffusion-Weighted Imaging for the Prediction of Prognostic Biomarkers and Molecular Subtypes of Breast Cancer Based on Radiomics. Zhang L; Zhou XX; Liu L; Liu AY; Zhao WJ; Zhang HX; Zhu YM; Kuai ZX J Magn Reson Imaging; 2023 Nov; 58(5):1590-1602. PubMed ID: 36661350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]