BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 35583760)

  • 1. Adsorption kinetics and equilibrium of Ni
    Peres EC; Pinto D; Netto MS; Mallmann ES; Silva LFO; Foletto EL; Dotto GL
    Environ Sci Pollut Res Int; 2022 Oct; 29(46):70158-70166. PubMed ID: 35583760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of geopolymers from fly and bottom ashes of a thermoelectrical power plant for metallic ions adsorption.
    Peres EC; Netto MS; Mallmann ES; Silva LFO; Foletto EL; Dotto GL
    Environ Sci Pollut Res Int; 2022 Jan; 29(2):2699-2706. PubMed ID: 34378138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of economical feasible fly ash-based zeolite-supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents.
    Angaru GKR; Choi YL; Lingamdinne LP; Choi JS; Kim DS; Koduru JR; Yang JK; Chang YY
    Chemosphere; 2021 Mar; 267():128889. PubMed ID: 33187656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recycling of bottom ash derived from combustion of cattle manure and its adsorption behaviors for Cd(II), Cu(II), Pb(II), and Ni(II).
    Hong SH; Shin MC; Lee J; Lee CG; Song DS; Um BH; Park SJ
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14957-14968. PubMed ID: 33222064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of adsorption properties of Turkish fly ashes. I. The case of nickel(II), copper(II) and zinc(II).
    Bayat B
    J Hazard Mater; 2002 Dec; 95(3):251-73. PubMed ID: 12423941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mild Hydrothermal Synthesis of 11Å-TA from Alumina Extracted Coal Fly Ash and Its Application in Water Adsorption of Heavy Metal Ions (Cu(II) and Pb(II)).
    Yang J; Sun H; Peng T; Zeng L; Zhou X
    Int J Environ Res Public Health; 2022 Jan; 19(2):. PubMed ID: 35055438
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy metal removal from water by adsorption using a low-cost geopolymer.
    Panda L; Jena SK; Rath SS; Misra PK
    Environ Sci Pollut Res Int; 2020 Jul; 27(19):24284-24298. PubMed ID: 32306254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of geopolymers synthesized from incinerated municipal solid waste ashes for the removal of cationic dye from water.
    Al-Ghouti MA; Khan M; Nasser MS; Al Saad K; Ee Heng O
    PLoS One; 2020; 15(11):e0239095. PubMed ID: 33151952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coal ash conversion into effective adsorbents for removal of heavy metals and dyes from wastewater.
    Wang S; Soudi M; Li L; Zhu ZH
    J Hazard Mater; 2006 May; 133(1-3):243-51. PubMed ID: 16310947
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Green, non-toxic and efficient adsorbent from hazardous ash waste for the recovery of valuable metals and heavy metal removal from waste streams.
    Prabhakar AK; Mohan BC; Tai MH; Yao Z; Su W; Lay-Ming Teo S; Wang CH
    Chemosphere; 2023 Jul; 329():138524. PubMed ID: 37019407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characterization of P-type zeolite for adsorption of Cr
    Liu Z; Cheng X
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23664-23679. PubMed ID: 38424243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption capacity of composite bio-modified geopolymer for multi-component heavy metal system: optimisation, equilibrium and kinetics study.
    Mama CN; Nwonu DC; Akanno CC; Chukwuemeka OE
    Environ Monit Assess; 2022 Jan; 194(2):134. PubMed ID: 35089405
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geopolymerization enhanced hydrothermal synthesis of analcime from steel slag and CFBC fly ash and heavy metal adsorption on analcime.
    Liu Z; Li L; Shao N; Hu T; Han L; Wang D
    Environ Technol; 2020 Jun; 41(14):1753-1765. PubMed ID: 30403928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorptive removal of five heavy metals from water using blast furnace slag and fly ash.
    Nguyen TC; Loganathan P; Nguyen TV; Kandasamy J; Naidu R; Vigneswaran S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20430-20438. PubMed ID: 28707235
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of the Cu(II) and Pb(II) removal efficiency of aqueous solutions by the dry biomass Aguapé: kinetics of adsorption.
    de Freitas F; Battirola LD; Arruda R; de Andrade RLT
    Environ Monit Assess; 2019 Nov; 191(12):751. PubMed ID: 31732816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on geopolymers as emerging materials for the adsorption of heavy metals and dyes.
    Siyal AA; Shamsuddin MR; Khan MI; Rabat NE; Zulfiqar M; Man Z; Siame J; Azizli KA
    J Environ Manage; 2018 Oct; 224():327-339. PubMed ID: 30056352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes.
    Hussain Z; Chang N; Sun J; Xiang S; Ayaz T; Zhang H; Wang H
    J Hazard Mater; 2022 Jan; 422():126778. PubMed ID: 34391971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash.
    Hui KS; Chao CY; Kot SC
    J Hazard Mater; 2005 Dec; 127(1-3):89-101. PubMed ID: 16076523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geopolymer composite spheres derived from graphene-modified fly ash/slag: Facile synthesis and removal of lead ions in wastewater.
    Yan S; Huang K; Zhang F; Ren X; Wang X; Xing P
    Environ Res; 2023 Mar; 220():115141. PubMed ID: 36572330
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.