These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35584531)

  • 21. Efficient
    Bassil P; Floner D; Guiheneuf S; Paquin L; Geneste F
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36373-36379. PubMed ID: 38979971
    [TBL] [Abstract][Full Text] [Related]  

  • 22. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery.
    Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries.
    Pan M; Lu Y; Lu S; Yu B; Wei J; Liu Y; Jin Z
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44174-44183. PubMed ID: 34496562
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pyrrolinium-Substituted Persistent Zwitterionic Ferrocenate Derivative Enabling the Application of Ferrocene Anolyte.
    Song H; Kwon G; Citek C; Jeon S; Kang K; Lee E
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):46558-46565. PubMed ID: 34558898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries.
    Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS
    Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage.
    Zhang X; Liu X; Zhang H; Wang Z; Zhang Y; Li G; Li MJ; He G
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):48727-48733. PubMed ID: 36257057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries.
    Hendriks KH; Robinson SG; Braten MN; Sevov CS; Helms BA; Sigman MS; Minteer SD; Sanford MS
    ACS Cent Sci; 2018 Feb; 4(2):189-196. PubMed ID: 29532018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyperbranched TEMPO-based polymers as catholytes for redox flow battery applications.
    Ehtiati K; Anufriev I; Friebe C; Volodin IA; Stolze C; Muench S; Festag G; Nischang I; Hager MD; Schubert US
    RSC Adv; 2024 Oct; 14(45):32893-32910. PubMed ID: 39429941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries.
    Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X
    RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sulfonate-Based Triazine Multiple-Electron Anolyte for Aqueous Organic Flow Batteries.
    Asenjo-Pascual J; Wiberg C; Shahsavan M; Salmeron-Sanchez I; Mauleon P; Aviles Moreno JR; Ocon P; Peljo P
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):36242-36249. PubMed ID: 37489711
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-Capacity CuSi
    Zhang X; Li W; Chen H
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40552-40561. PubMed ID: 34423636
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Fe
    Tsitovich PB; Kosswattaarachchi AM; Crawley MR; Tittiris TY; Cook TR; Morrow JR
    Chemistry; 2017 Nov; 23(61):15327-15331. PubMed ID: 28929548
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical Evaluation of Diketopyrrolopyrrole Derivatives for Nonaqueous Redox Flow Batteries.
    Sharma S; Rathod S; Prakash Yadav S; Chakraborty A; Shukla AK; Aetukuri N; Patil S
    Chemistry; 2021 Aug; 27(47):12172-12180. PubMed ID: 34041796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.
    Hu B; DeBruler C; Rhodes Z; Liu TL
    J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Water-soluble pH-switchable cobalt complexes for aqueous symmetric redox flow batteries.
    Wang H; Sayed SY; Zhou Y; Olsen BC; Luber EJ; Buriak JM
    Chem Commun (Camb); 2020 Mar; 56(25):3605-3608. PubMed ID: 32186551
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A higher voltage Fe(ii) bipyridine complex for non-aqueous redox flow batteries.
    Cammack CX; Pratt HD; Small LJ; Anderson TM
    Dalton Trans; 2021 Jan; 50(3):858-868. PubMed ID: 33346757
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System.
    Janoschka T; Martin N; Hager MD; Schubert US
    Angew Chem Int Ed Engl; 2016 Nov; 55(46):14427-14430. PubMed ID: 27754587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.