These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery. Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369 [TBL] [Abstract][Full Text] [Related]
23. The Dual Role of Bridging Phenylene in an Extended Bipyridine System for High-Voltage and Stable Two-Electron Storage in Redox Flow Batteries. Pan M; Lu Y; Lu S; Yu B; Wei J; Liu Y; Jin Z ACS Appl Mater Interfaces; 2021 Sep; 13(37):44174-44183. PubMed ID: 34496562 [TBL] [Abstract][Full Text] [Related]
24. Pyrrolinium-Substituted Persistent Zwitterionic Ferrocenate Derivative Enabling the Application of Ferrocene Anolyte. Song H; Kwon G; Citek C; Jeon S; Kang K; Lee E ACS Appl Mater Interfaces; 2021 Oct; 13(39):46558-46565. PubMed ID: 34558898 [TBL] [Abstract][Full Text] [Related]
25. Development of High Energy Density Diaminocyclopropenium-Phenothiazine Hybrid Catholytes for Non-Aqueous Redox Flow Batteries. Yan Y; Vogt DB; Vaid TP; Sigman MS; Sanford MS Angew Chem Int Ed Engl; 2021 Dec; 60(52):27039-27045. PubMed ID: 34672070 [TBL] [Abstract][Full Text] [Related]
26. Robust Chalcogenophene Viologens as Anolytes for Long-Life Aqueous Organic Redox Flow Batteries with High Battery Voltage. Zhang X; Liu X; Zhang H; Wang Z; Zhang Y; Li G; Li MJ; He G ACS Appl Mater Interfaces; 2022 Nov; 14(43):48727-48733. PubMed ID: 36257057 [TBL] [Abstract][Full Text] [Related]
35. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. Hu B; DeBruler C; Rhodes Z; Liu TL J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765 [TBL] [Abstract][Full Text] [Related]
36. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte. Liu C; Shamie JS; Shaw LL; Sprenkle VL ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551 [TBL] [Abstract][Full Text] [Related]
37. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes. Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052 [TBL] [Abstract][Full Text] [Related]
39. A higher voltage Fe(ii) bipyridine complex for non-aqueous redox flow batteries. Cammack CX; Pratt HD; Small LJ; Anderson TM Dalton Trans; 2021 Jan; 50(3):858-868. PubMed ID: 33346757 [TBL] [Abstract][Full Text] [Related]
40. An Aqueous Redox-Flow Battery with High Capacity and Power: The TEMPTMA/MV System. Janoschka T; Martin N; Hager MD; Schubert US Angew Chem Int Ed Engl; 2016 Nov; 55(46):14427-14430. PubMed ID: 27754587 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]