These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 35584961)

  • 1. Preparation and Photocatalytic Activity of Hexagonal Plate-like ZnO Particles Using Anionic Surfactants.
    Amano M; Hashimoto K; Shibata H
    J Oleo Sci; 2022 Jun; 71(6):927-932. PubMed ID: 35584961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and Photocatalytic Activity of Hexagonal Plate-like Shaped Au Nanoparticles/ZnO Composite Particles under Visible-light Irradiation.
    Amano M; Recuenco MC; Hashimoto K; Shibata H
    J Oleo Sci; 2022 Apr; 71(5):771-778. PubMed ID: 35296575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Anionic Amphiphiles on the Morphology of Hexagonal Plate-like ZnO Particles.
    Shibata H; Iizuka Y; Amano M; Takayanagi E; Ogura T; Hashimoto K
    J Oleo Sci; 2021 Jul; 70(7):919-925. PubMed ID: 34121035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of Hexagonal Plate-like ZnO Single-crystal Particles in the Presence of Anionic Amphiphiles.
    Shibata H; Iizuka Y; Kawai T; Watai Y; Amano M; Fujimori A; Ogura T; Hashimoto K
    J Oleo Sci; 2020 Jul; 69(7):783-787. PubMed ID: 32522948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of Oriented ZnO Rod Arrays Using Hexagonal Plate-Like Particles as a Seed Layer.
    Koyasu S; Makino H; Tarutani N; Suzuki TS; Uchikoshi T; Ishigaki T
    Langmuir; 2023 Jan; 39(1):487-494. PubMed ID: 36574623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data on the growth of ZnO nanorods on Nylon 6 and photocatalytic activity.
    Ummartyotin S; Tangnorawich B
    Data Brief; 2016 Sep; 8():643-7. PubMed ID: 27437437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic induced morpholical transformation of porous ZnO to ZnO nanorods by Sn(IV) and their effect on photocatalytic reduction of methylene blue and DFT calculations.
    Ali MS; Al-Lohedan HA; Abdullah MMS; Afsan Z; Tabassum S
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117101. PubMed ID: 31150923
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity.
    Zhang L; Yin L; Wang C; Lun N; Qi Y
    ACS Appl Mater Interfaces; 2010 Jun; 2(6):1769-73. PubMed ID: 20499872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of humic acid on photocatalytic activity of ZnO nanoparticles.
    Chandran P; Netha S; Sudheer Khan S
    J Photochem Photobiol B; 2014 Sep; 138():155-9. PubMed ID: 24935416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile Controlling of the Physical Properties of Zinc Oxide and Its Application to Enhanced Photocatalysis.
    Vu Anh T; Pham TAT; Mac VH; Nguyen TH
    J Anal Methods Chem; 2021; 2021():5533734. PubMed ID: 33936835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of various capping agents on photocatalytic, antibacterial and antibiofilm activities of ZnO nanoparticles.
    Akhil K; Jayakumar J; Gayathri G; Khan SS
    J Photochem Photobiol B; 2016 Jul; 160():32-42. PubMed ID: 27088507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis, characterization and photocatalytic activity of magnetically separable hexagonal Ni/ZnO nanostructure.
    Senapati S; Srivastava SK; Singh SB
    Nanoscale; 2012 Oct; 4(20):6604-12. PubMed ID: 22975724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of exopolysaccharides on photocatalytic activity of ZnO nanoparticles.
    Chandran P; Netha S; Ravindran A; Sudheer Khan S
    Colloids Surf B Biointerfaces; 2014 Oct; 122():611-616. PubMed ID: 25124836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Photocatalytic Degradation of Methylene Blue Using Ti-Doped ZnO Nanoparticles Synthesized by Rapid Combustion.
    Wongrerkdee S; Wongrerkdee S; Boonruang C; Sujinnapram S
    Toxics; 2022 Dec; 11(1):. PubMed ID: 36668759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, Characterization and Sun Light-Driven Photocatalytic Activity of Zinc Oxide Nanostructures.
    Verma HK; Vij M; Maurya KK
    J Nanosci Nanotechnol; 2020 Jun; 20(6):3683-3692. PubMed ID: 31748065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental Design Modeling of the Effect of Hexagonal Wurtzite-ZnO Synthesis Conditions on Its Characteristics and Performance as a Cationic and Anionic Adsorbent.
    Khalaf MM; Da'na E; Al-Amer K; Hessien M
    Molecules; 2019 Oct; 24(21):. PubMed ID: 31661919
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Narath S; Koroth SK; Shankar SS; George B; Mutta V; Wacławek S; Černík M; Padil VVT; Varma RS
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34199291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on the formation of macroporous ZnO bundles and its application in photocatalysis.
    Muruganandham M; Chen IS; Wu JJ
    J Hazard Mater; 2009 Dec; 172(2-3):700-6. PubMed ID: 19665842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of silver-loaded ZnO nanorods and their enhanced photocatalytic activity and photoconductivity study.
    Pimpliskar PV; Motekar SC; Umarji GG; Lee W; Arbuj SS
    Photochem Photobiol Sci; 2019 Jun; 18(6):1503-1511. PubMed ID: 30972400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functionalization of Commercial Electrospun Veils with Zinc Oxide Nanostructures.
    Bavasso I; Sbardella F; Bracciale MP; Lilli M; Tirillò J; Di Palma L; Felici AC; Sarasini F
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33562142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.