These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 35585043)
1. Divergence-degenerate spatial multiplexing towards future ultrahigh capacity, low error-rate optical communications. Wan Z; Shen Y; Wang Z; Shi Z; Liu Q; Fu X Light Sci Appl; 2022 May; 11(1):144. PubMed ID: 35585043 [TBL] [Abstract][Full Text] [Related]
2. Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications. Zhou H; Su X; Minoofar A; Zhang R; Zou K; Song H; Pang K; Song H; Hu N; Zhao Z; Almaiman A; Zach S; Tur M; Molisch AF; Sasaki H; Lee D; Willner AE Opt Express; 2022 Jul; 30(14):25418-25432. PubMed ID: 36237073 [TBL] [Abstract][Full Text] [Related]
3. Dense Space-Division Multiplexing Exploiting Multi-Ring Perfect Vortex. Liu X; Deng D; Yang Z; Li Y Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067905 [TBL] [Abstract][Full Text] [Related]
4. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Willner AE; Ren Y; Xie G; Yan Y; Li L; Zhao Z; Wang J; Tur M; Molisch AF; Ashrafi S Philos Trans A Math Phys Eng Sci; 2017 Feb; 375(2087):. PubMed ID: 28069770 [TBL] [Abstract][Full Text] [Related]
5. Extending orbital angular momentum multiplexing to radially high orders for massive mode channels in fiber transmission. Kong A; Lei T; Wang D; Tu J; Shen L; Zhang L; Luo J; Fang J; Zhang W; Yuna X Opt Lett; 2023 Jul; 48(14):3717-3720. PubMed ID: 37450733 [TBL] [Abstract][Full Text] [Related]
6. The Limits of Effective Degrees of Freedom in UCA based Orbital Angular Momentum Multiplexed Communications. Li Z; Qu F; Wei Y; Yang G; Xu W; Xu J Sci Rep; 2020 Mar; 10(1):5216. PubMed ID: 32251300 [TBL] [Abstract][Full Text] [Related]
7. Polarization-insensitive PAM-4-carrying free-space orbital angular momentum (OAM) communications. Liu J; Wang J Opt Express; 2016 Feb; 24(4):4258-69. PubMed ID: 26907073 [TBL] [Abstract][Full Text] [Related]
8. High-order orbital angular momentum mode-based phase shift-keying communication using phase difference modulation. Chen J; Huang Z; Wang P; Ye H; Chen S; Fan D; Liu J Opt Express; 2023 Dec; 31(26):44353-44363. PubMed ID: 38178508 [TBL] [Abstract][Full Text] [Related]
9. Reconfigurable switching of orbital-angular-momentum-based free-space data channels. Yue Y; Huang H; Ahmed N; Yan Y; Ren Y; Xie G; Rogawski D; Tur M; Willner AE Opt Lett; 2013 Dec; 38(23):5118-21. PubMed ID: 24281524 [TBL] [Abstract][Full Text] [Related]
10. Polarized deep diffractive neural network for sorting, generation, multiplexing, and de-multiplexing of orbital angular momentum modes. Zhang J; Ye Z; Yin J; Lang L; Jiao S Opt Express; 2022 Jul; 30(15):26728-26741. PubMed ID: 36236859 [TBL] [Abstract][Full Text] [Related]
11. Orbital angular momentum deep multiplexing holography via an optical diffractive neural network. Huang Z; He Y; Wang P; Xiong W; Wu H; Liu J; Ye H; Li Y; Fan D; Chen S Opt Express; 2022 Feb; 30(4):5569-5584. PubMed ID: 35209516 [TBL] [Abstract][Full Text] [Related]
12. Ultra-dense perfect optical orbital angular momentum multiplexed holography. Zhu G; Bai Z; Chen J; Huang C; Wu L; Fu C; Wang Y Opt Express; 2021 Aug; 29(18):28452-28460. PubMed ID: 34614976 [TBL] [Abstract][Full Text] [Related]
13. High-capacity and multi-dimensional orbital angular momentum multiplexing holography. Zhang N; Xiong B; Zhang X; Yuan X Opt Express; 2023 Sep; 31(20):31884-31897. PubMed ID: 37859003 [TBL] [Abstract][Full Text] [Related]
14. Free-space optical communications using orbital-angular-momentum multiplexing combined with MIMO-based spatial multiplexing. Ren Y; Wang Z; Xie G; Li L; Cao Y; Liu C; Liao P; Yan Y; Ahmed N; Zhao Z; Willner A; Ashrafi N; Ashrafi S; Linquist RD; Bock R; Tur M; Molisch AF; Willner AE Opt Lett; 2015 Sep; 40(18):4210-3. PubMed ID: 26371898 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the coupling efficiency of OAM beams into ring-core optical fibers. Rojas-Rojas S; Cañas G; Saavedra G; Gómez ES; Walborn SP; Lima G Opt Express; 2021 Jul; 29(15):23381-23392. PubMed ID: 34614604 [TBL] [Abstract][Full Text] [Related]
16. Generation of E-band metasurface-based vortex beam with reduced divergence angle. Chung H; Kim D; Sawant A; Lee I; Choi E; Lee J Sci Rep; 2020 May; 10(1):8289. PubMed ID: 32427962 [TBL] [Abstract][Full Text] [Related]
17. Spatial and mode selective switch for orbital angular momentum mode division multiplexing. Zhong W; Lin Z; Wu L; Wu Z; Chen H; Chen Y; Yu S Opt Lett; 2024 Jun; 49(11):3006-3009. PubMed ID: 38824314 [TBL] [Abstract][Full Text] [Related]
18. Deep-space and near-Earth optical communications by coded orbital angular momentum (OAM) modulation. Djordjevic IB Opt Express; 2011 Jul; 19(15):14277-89. PubMed ID: 21934792 [TBL] [Abstract][Full Text] [Related]
19. Wavelength- and OAM-tunable vortex laser with a reflective volume Bragg grating. Liu Q; Zhao Y; Ding M; Yao W; Fan X; Shen D Opt Express; 2017 Sep; 25(19):23312-23319. PubMed ID: 29041632 [TBL] [Abstract][Full Text] [Related]
20. Multipath Effects in Millimetre-Wave Wireless Communication using Orbital Angular Momentum Multiplexing. Yan Y; Li L; Xie G; Bao C; Liao P; Huang H; Ren Y; Ahmed N; Zhao Z; Wang Z; Ashrafi N; Ashrafi S; Talwar S; Sajuyigbe S; Tur M; Molisch AF; Willner AE Sci Rep; 2016 Sep; 6():33482. PubMed ID: 27658443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]