BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35585216)

  • 1. Effect of PEG grafting density on surface properties of polyurethane substrata and the viability of osteoblast and fibroblast cells.
    Abreu-Rejón AD; Herrera-Kao W; May-Pat A; Ávila-Ortega A; Rodríguez-Fuentes N; Uribe-Calderón JA; Cervantes-Uc JM
    J Mater Sci Mater Med; 2022 May; 33(6):45. PubMed ID: 35585216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Molecular Weight and Grafting Density of PEG on the Surface Properties of Polyurethanes and Their Effect on the Viability and Morphology of Fibroblasts and Osteoblasts.
    Abreu-Rejón AD; Herrera-Kao WA; May-Pat A; Ávila-Ortega A; Rodríguez-Fuentes N; Uribe-Calderón JA; Cervantes-Uc JM
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale.
    Chung TW; Liu DZ; Wang SY; Wang SS
    Biomaterials; 2003 Nov; 24(25):4655-61. PubMed ID: 12951008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Platelet adhesion and activation on polyethylene glycol modified polyurethane surfaces. Measurement of cytoplasmic calcium.
    Park KD; Suzuki K; Lee WK; Lee JE; Kim YH; Sakurai Y; Okano T
    ASAIO J; 1996; 42(5):M876-81. PubMed ID: 8945010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, Characterization, and Bacterial Fouling-Resistance Properties of Polyethylene Glycol-Grafted Polyurethane Elastomers.
    Francolini I; Silvestro I; Di Lisio V; Martinelli A; Piozzi A
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30823606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and surface properties of PEO-sulfonate grafted polyurethanes for enhanced blood compatibility.
    Han DK; Jeong SY; Ahn KD; Kim YH; Min BG
    J Biomater Sci Polym Ed; 1993; 4(6):579-89. PubMed ID: 8280672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexible starch-polyurethane films: Physiochemical characteristics and hydrophobicity.
    Tai NL; Adhikari R; Shanks R; Adhikari B
    Carbohydr Polym; 2017 May; 163():236-246. PubMed ID: 28267502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane.
    Lin YS; Wang SS; Chung TW; Wang YH; Chiou SH; Hsu JJ; Chou NK; Hsieh KH; Chu SH
    Artif Organs; 2001 Aug; 25(8):617-21. PubMed ID: 11531712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface graft polymerization of poly(ethylene glycol) methacrylate onto polyurethane via thiol-ene reaction: preparation and characterizations.
    Jung IK; Bae JW; Choi WS; Choi JH; Park KD
    J Biomater Sci Polym Ed; 2009; 20(10):1473-82. PubMed ID: 19622283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of polyurethane with polyethylene glycol-corn trypsin inhibitor for inhibition of factor Xlla in blood contact.
    Alibeik S; Zhu S; Yau JW; Weitz JI; Brash JL
    J Biomater Sci Polym Ed; 2012; 23(15):1981-93. PubMed ID: 21986216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Synthesis and characterization of PEG-segmented polyurethane].
    Luo J; Wang P; Li J; Xie X; Fan C; He C; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Feb; 23(1):125-8. PubMed ID: 16532826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface modification using silanated poly(ethylene glycol)s.
    Jo S; Park K
    Biomaterials; 2000 Mar; 21(6):605-16. PubMed ID: 10701461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient One-Step Passivation of Polyurethane Using Transurethanization.
    Rhoné B; Galtayries A; Semetey V
    Macromol Biosci; 2023 Dec; 23(12):e2300168. PubMed ID: 37551859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type I atelocollagen grafting onto ozone-treated polyurethane films: cell attachment, proliferation, and collagen synthesis.
    Park JC; Hwang YS; Lee JE; Park KD; Matsumura K; Hyon SH; Suh H
    J Biomed Mater Res; 2000 Dec; 52(4):669-77. PubMed ID: 11033549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PEO-grafting on PU/PS IPNs for enhanced blood compatibility--effect of pendant length and grafting density.
    Kim JH; Kim SC
    Biomaterials; 2002 May; 23(9):2015-25. PubMed ID: 11996043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and wound healing of alternating block polyurethanes based on poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG).
    Li L; Liu X; Niu Y; Ye J; Huang S; Liu C; Xu K
    J Biomed Mater Res B Appl Biomater; 2017 Jul; 105(5):1200-1209. PubMed ID: 27059634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alternating block polyurethanes based on PCL and PEG as potential nerve regeneration materials.
    Li G; Li D; Niu Y; He T; Chen KC; Xu K
    J Biomed Mater Res A; 2014 Mar; 102(3):685-97. PubMed ID: 23554296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on preparation and performance of PEG-based polyurethane foams modified by the chitosan with different molecular weight.
    Qin H; Wang K
    Int J Biol Macromol; 2019 Nov; 140():877-885. PubMed ID: 31446107
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The in vitro blood compatibility of poly(ethylene oxide)-grafted polyurethane/polystyrene interpenetrating polymer networks.
    Kim JH; Song MJ; Roh HW; Shin YC; Kim SC
    J Biomater Sci Polym Ed; 2000; 11(2):197-216. PubMed ID: 10718479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.