These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
27. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events. Ben-Yoav H; Dykstra PH; Bentley WE; Ghodssi R Methods Mol Biol; 2017; 1572():71-88. PubMed ID: 28299682 [TBL] [Abstract][Full Text] [Related]
28. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification. Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867 [TBL] [Abstract][Full Text] [Related]
29. [Isothermal amplification technology based on microfluidic chip]. Tu Y; Yang D; Zhang Z; Dong X; Liu L; Miao G; Zhang L; Qiu X Sheng Wu Gong Cheng Xue Bao; 2022 Mar; 38(3):943-960. PubMed ID: 35355466 [TBL] [Abstract][Full Text] [Related]
30. Microfluidics: applications for analytical purposes in chemistry and biochemistry. Ohno K; Tachikawa K; Manz A Electrophoresis; 2008 Nov; 29(22):4443-53. PubMed ID: 19035399 [TBL] [Abstract][Full Text] [Related]
31. Microfluidic Devices for Forensic DNA Analysis: A Review. Bruijns B; van Asten A; Tiggelaar R; Gardeniers H Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27527231 [TBL] [Abstract][Full Text] [Related]
32. High-Efficiency and High-Throughput On-Chip Exchange of the Continuous Phase in Droplet Microfluidic Systems. Kim M; Leong CM; Pan M; Blauch LR; Tang SKY SLAS Technol; 2017 Oct; 22(5):529-535. PubMed ID: 28402212 [TBL] [Abstract][Full Text] [Related]
33. Microfluidic array surface ion-imprinted monolithic capillary microextraction chip on-line hyphenated with ICP-MS for the high throughput analysis of gadolinium in human body fluids. Ou X; He M; Chen B; Wang H; Hu B Analyst; 2019 Apr; 144(8):2736-2745. PubMed ID: 30865732 [TBL] [Abstract][Full Text] [Related]
34. Microfluidics as an Emerging Platform for Exploring Soil Environmental Processes: A Critical Review. Zhu X; Wang K; Yan H; Liu C; Zhu X; Chen B Environ Sci Technol; 2022 Jan; 56(2):711-731. PubMed ID: 34985862 [TBL] [Abstract][Full Text] [Related]
36. A smart and portable micropump for stable liquid delivery. Zhang X; Xia K; Ji A; Xiang N Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114 [TBL] [Abstract][Full Text] [Related]
37. Transposing Lateral Flow Immunoassays to Capillary-Driven Microfluidics Using Self-Coalescence Modules and Capillary-Assembled Receptor Carriers. Hemmig E; Temiz Y; Gökçe O; Lovchik RD; Delamarche E Anal Chem; 2020 Jan; 92(1):940-946. PubMed ID: 31860276 [TBL] [Abstract][Full Text] [Related]
38. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices. Park J; Han DH; Park JK Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024 [TBL] [Abstract][Full Text] [Related]
39. Temperature Gradients Drive Bulk Flow Within Microchannel Lined by Fluid-Fluid Interfaces. Amador GJ; Ren Z; Tabak AF; Alapan Y; Yasa O; Sitti M Small; 2019 May; 15(21):e1900472. PubMed ID: 30993841 [TBL] [Abstract][Full Text] [Related]
40. Smartphone-Based Paper Microfluidic Immunoassay of Salmonella and E. coli. Dieckhaus L; Park TS; Yoon JY Methods Mol Biol; 2021; 2182():83-101. PubMed ID: 32894489 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]