These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 35585345)

  • 41. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.
    Parra-Cabrera C; Sporer C; Rodriguez-Villareal I; Rodriguez-Trujillo R; Homs-Corbera A; Samitier J
    Lab Chip; 2012 Oct; 12(20):4143-50. PubMed ID: 22868270
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.
    Zhang Y; Jiang HR
    Anal Chim Acta; 2016 Mar; 914():7-16. PubMed ID: 26965323
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads.
    Feng Z; Zhi S; Guo L; Zhou Y; Lei C
    Mikrochim Acta; 2019 Mar; 186(4):252. PubMed ID: 30903388
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D capillary stop valves for versatile patterning inside microfluidic chips.
    Papadimitriou VA; Segerink LI; van den Berg A; Eijkel JCT
    Anal Chim Acta; 2018 Feb; 1000():232-238. PubMed ID: 29289315
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidics in structured multimaterial fibers.
    Yuan R; Lee J; Su HW; Levy E; Khudiyev T; Voldman J; Fink Y
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10830-E10838. PubMed ID: 30373819
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SlipChip Device for Digital Nucleic Acid Amplification.
    Shen F
    Methods Mol Biol; 2017; 1547():123-132. PubMed ID: 28044292
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates.
    Gervais L; Delamarche E
    Lab Chip; 2009 Dec; 9(23):3330-7. PubMed ID: 19904397
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ultrafast and Real-Time Nanoplasmonic On-Chip Polymerase Chain Reaction for Rapid and Quantitative Molecular Diagnostics.
    Kang BH; Lee Y; Yu ES; Na H; Kang M; Huh HJ; Jeong KH
    ACS Nano; 2021 Jun; 15(6):10194-10202. PubMed ID: 34008961
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Solid-State Microfluidics with Integrated Thin-Film Acoustic Sensors.
    Zhang M; Huang J; Lu Y; Pang W; Zhang H; Duan X
    ACS Sens; 2018 Aug; 3(8):1584-1591. PubMed ID: 30039702
    [TBL] [Abstract][Full Text] [Related]  

  • 51. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics.
    Tarn MD; Pamme N
    Methods Mol Biol; 2017; 1547():69-83. PubMed ID: 28044288
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hemagglutination Assay via Optical Density Characterization in 3D Microtrap Chips.
    Nam SW; Jeon DG; Yoon YR; Lee GH; Chang Y; Won DI
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An All-Glass Microfluidic Network with Integrated Amorphous Silicon Photosensors for on-Chip Monitoring of Enzymatic Biochemical Assay.
    Costantini F; Tiggelaar RM; Salvio R; Nardecchia M; Schlautmann S; Manetti C; Gardeniers HJGE; de Cesare G; Caputo D; Nascetti A
    Biosensors (Basel); 2017 Dec; 7(4):. PubMed ID: 29206205
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An automated and portable microfluidic chemiluminescence immunoassay for quantitative detection of biomarkers.
    Hu B; Li J; Mou L; Liu Y; Deng J; Qian W; Sun J; Cha R; Jiang X
    Lab Chip; 2017 Jun; 17(13):2225-2234. PubMed ID: 28573279
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA.
    Yu ZT; Guan H; Cheung MK; McHugh WM; Cornell TT; Shanley TP; Kurabayashi K; Fu J
    Sci Rep; 2015 Jun; 5():11339. PubMed ID: 26074253
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Open-source, 3D-printed Peristaltic Pumps for Small Volume Point-of-Care Liquid Handling.
    Behrens MR; Fuller HC; Swist ER; Wu J; Islam MM; Long Z; Ruder WC; Steward R
    Sci Rep; 2020 Jan; 10(1):1543. PubMed ID: 32005961
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro-optics for microfluidic analytical applications.
    Yang H; Gijs MAM
    Chem Soc Rev; 2018 Feb; 47(4):1391-1458. PubMed ID: 29308474
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Self-Priming Microfluidic Chip with Cushion Chambers for Easy Digital PCR.
    Xu G; Si H; Jing F; Sun P; Wu D
    Biosensors (Basel); 2021 May; 11(5):. PubMed ID: 34069758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. An automated microdroplet passive pumping platform for high-speed and packeted microfluidic flow applications.
    Resto PJ; Mogen BJ; Berthier E; Williams JC
    Lab Chip; 2010 Jan; 10(1):23-6. PubMed ID: 20024045
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.